Superconducting Properties and Microstructure in Dilute Copper Alloys Containing Small Amounts of V_3Ga Particles(Metallurgy) | 著者 | NAGATA Akihiko, HIRAYAMA Hiroshi, NOTO | |-------------------|---| | | Koshichi, IZUMI Osamu | | journal or | Science reports of the Research Institutes, | | publication title | Tohoku University. Ser. A, Physics, chemistry | | | and metallurgy | | volume | 27 | | page range | 90-90 | | year | 1979 | | URL | http://hdl.handle.net/10097/28057 | MN m⁻², which is approximately the maximum flow stress of a pure molybdenum crystal. Aged specimens with less than 10 at. ppm carbon show lower yield and flow stresses than the pure crystal. ## Superconducting Properties and Microstructure in Dilute Copper Alloys Containing Small Amounts of V_a Ga Particles Akihiko Nagata, Hiroshi Hirayama, Kōshichi Noto and Osamu Izumi J. Appl. Phys., 48 (1977), 5175. The superconducting properties (T_c and J_c) were investigated by the resistivity measurement, and the structure was observed by a transmission electron microscopy in the dilute copper alloys containing small amounts of V_3 Ga particles prepared by quenching from the liquid state and aging. No superconductivity could be observed at 4.2 K in as-quenched and/or in overaged samples. The highest T_{c2} (=12.5 K), T_{c1} (=9.6 K), and J_c (=525 A/cm²) were obtained by aging at 700°C for 96 h and corresponded with the structure of fine V_3 Ga precipitates dispersed homogeneously in the copper matrix. Therefore, it is concluded that superconductivity in these alloys results from the superconducting path due to the proximity effect of the superconducting V_3 Ga particles. ## The Study of Unidirectional Transformation of Copper-Aluminium Eutectoid Alloy Controlled by the Heat Flow Hideyuki Toriumi, Seiji Terasawa and Osamu Izumi J. Jap. Inst. Met., 41 (1977), 657. Cu-Al eutectoid alloy has been transformed unidirectionally to produce aligned pearlitic structure in an electric resistance furnace under the temperature gradient of ~ 150 °C/cm and with the translation velocity from 0.28 to 5 mm/hr. At lower translation velocities, well-aligned pearlite paralell to the heat flow direction was produced. However, at higher velocities, a "zigzag" or "herringbone" structure was produced. The relationship between trnslation velocity (R) and interlamellar spacing (λ) was determined. At low velocities a growth law of R $\lambda^{3.7}$ = const. existed. As the growth velocity increased, the exponent in the growth law continuously changed from 3.7 to 1.2. The change in R- λ relationship over a wide velocity range was consistent with the theoretical analysis by Carpay. ## Superconductivity of Cu-base Dispersion Alloys Osamu Izumi, Akihiko Nagata, Koshichi Noto and Hiroshi Hirayama Shindo Gijutsu Kenkyukai Shi (J. Jap. Copper & Brass Res. Assoc.), **16** (1977), 41. Pure copper is not a superconductor even at the millidegree temperature range. However, it is known that a small amount of some superconducting elements such as Nb or Pb added to copper makes this alloy a superconductor. The superconductivity of this alloy is said to result from a proximity effect of superconducting