

Glass Formation in the Ln-Al-O System (Ln : Lanthanoid and Yttrium Elements)

著者	YAJIMA Seishi, OKAMURA Kiyohito, SHISHIDO
	Toetsu
journal or	Science reports of the Research Institutes,
publication title	Tohoku University. Ser. A, Physics, chemistry
	and metallurgy
volume	26
page range	86-86
year	1976
URL	http://hdl.handle.net/10097/27754

Abstracts of Papers on Amorphous Materials Published in Other Journals

Unusual Glass Formation in the Al-Nd-O System

Seishi Yajıma, Kiyohito Okamura and Toetsu Shishido Chemistry Letters (1973), 741.

A new oxide glass in the Al-Nd-O system was made through fusing by arc plasma torch and rapid quenching by a particular device although, in this system, so far it was very difficult to realize the glassy state. Quenched material of about 5 mm in diameter and about $1\,\mu$ in thickness was examined by polarizing microscope and by X-ray diffraction technique. The results clearly showed the existence of the glassy state.

Glass Formation in the Ln-Al-O System (Ln: Lanthanoid and Yttrium Elements)

Seishi Yajıma, Kiyohito Okamura and Toetsu Shishido Chemistry Letters (1973), 1327.

Oxide glasses in the Ln-Al-O system were prepared with the molar ratio of $\operatorname{Ln_2O_3:Al_2O_3}$ of 10:1 to 1:10 for all the lanthanoids and yttrium by an impact quenching technique. Each quenched material was examined by polarizing microscope, X-ray diffraction and electron diffraction. The electron diffraction patterns show diffuse halos characteristic of an amorphous state.

Synthesis of Lanthanoid Aluminates (β -Al₂O₃ Type) Using Arc Plasma Flame

Seishi Yajıma, Kiyohito Okamura and Toetsu Shishido Chemistry Letters (1973), 1331.

New compounds with approximate formulas, $La_2O_3 \cdot 7Al_2O_3$, $Pr_2O_3 \cdot 7Al_2O_3$, $Nd_2O_3 \cdot 8Al_2O_3$ and $Sm_2O_3 \cdot 7Al_2O_3$, have been obtained through melting by arc plasma flame and separated into their own single phases by a proper chemical treatment. All of the compounds have the β -Al₂O₃ type structure. Excepting only $La_2O_3 \cdot 7Al_2O_3$, these compounds have the β -Al₂O₃ type structure at temperatures higher than 1500°C.

Crystallization of an Amorphous Oxide in La-Nb-O System

Seishi Yajıma, Kiyohito Okamura and Toetsu Shishido Chemistry Letters (1974), 221.

An amorphous oxide of which composition corresponds to La₂O₃·5Nb₂O₅ was prepared by making use of an impact quenching technique. The phase transformation from an amorphous to an equilibrium crystalline state was studied by