

The Preparation and Crystal Structure of Ternary Rare Earth Borides, RCo_3B_2

著者	NIIHARA Koichi, YAJIMA Seishi
journal or	Science reports of the Research Institutes,
publication title	Tohoku University. Ser. A, Physics, chemistry
	and metallurgy
volume	25
page range	251-251
year	1974
URL	http://hdl.handle.net/10097/27740

The Preparation and Crystal Structure of Ternary Rare Earth Borides, RCo₃B₂*

Koichi NIIHARA and Seishi YAJIMA

The Research Institute for Iron, Steel and Other Metals

Abstract

In the ternary system of rare earth-cobalt-boron, RCo₃B₂ compounds (R= rare earth elements) were prepared by arc-melting methods. Their crystal structure was investigated by X-ray diffraction methods. These ternary borides, RCo₃B₂, crystallize in a hexagonal lattice. The lattice parameters are $a=5.020\pm0.002\text{\AA}$ and $c=3.027\pm0.002 \text{ Å}$ for YCo₃B₂ and $a=5.066\pm0.003 \text{ Å}$ and $c=3.022\pm0.002$ A for GdCo₃B₂. The good agreement between the X-ray diffraction intensities observed and calculated shows that the ternary borides, YCo₃B₂ and GdCo₃B₂, crystallize in the CaZn₅-type structure. The space group and atomic positions are as follows: P6/mmm ($D_{\rm th}^2$), 1R in 1(a), 3Co in 3(g), and 2B in 2(c). It can be seen from these results that the ternary borides, RCo₃B₂, have a superstructure in which two Co atoms in the 2(c) site of intermetallic compounds, RCo₅, with the CaZn₅type structure are replaced by two B atoms. The B atoms in this structure are situated at the center of a trigonal prism formed by six Co atoms. The interatomic distances between B and the six Co atoms are 2.11-2.10 Å and are fairly constant, although the radii of the rare earth atoms are changed according to the lanthanide contraction. We have also found RCo₃B₂ compounds to be isostructural with YCo₃B₂ and GdCo₃B₂, where R=Ce, Sm, Tb, Dy, Ho, and Er. Efforts to prepare LaCo₃B₂, PrCo₃B₂, and NdCo₃B₂ by arc-melting were unsuccessful.

^{*} The 1652th report of the Research Institute for Iron, Steel and Other Metals. Published in the Bulletin of the Chemical Society of Japan, 46 (1973), 770.