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Synopsis

This report presents an experimental procedure in X-ray diffraction study to determine
the atomic distribution in monoatomic liquids. The methods for the corrections, normaliza-
tion and the Fourier analysis on the X-ray scattering intensity from liquid sample (liquid
mercury at 15°C) have been discussed in detail. The main results are as follows;

1) The atomic scattering factor should be modified by an anomalous dispersion effect.

2) Krogh-Moe-Morman’s method is a useful one for the normalization of the X-
ray scattering intensity.

3) When the different divergence-slits are used to measure the X-ray scattering in-
tensity, the ratio of intensity obtained deviate from the value given from the ratio of the
divergence; namely this ratio is a function of the scattering angle. Hence, this factor
should be considered on the analysis within the experimental error.

I. Introduction

The liquid state of matters is the least understood of the three states of matter
(solid, liquid, and gas). In the last few years, much theoretical effort has been
devoted to the molecular theories of liquids and to the electronic properties of liquid
metals. Especially the structural information is one of the most important knowl-
edge to discuss these properties. X-ray diffraction is one of the useful methods
that may be employed to study the liquid state of matters mainly from the point
of view having an insight into their static structure (structure factor).

The review on the X-ray work including the experimental and analytical
procedures in this field has been summarized by Gingrich® in 1943, and by Furu-
kawa® in 1962. Recently, the accuracy in the measurement of X-ray scattering
intensity has greatly progressed and some new methods for the X-ray Fourier
analysis have been suggested.

From these reasons, it would be desirable to re-examine in detail, the analytical
procedures of monoatomic liquids by X-ray diffraction which gives the radial
distribution function about instantaneous three-dimentional structures averaged

* The 214th report of the Research Institute of Mineral Dressing and Metallurgy. Original-
ly published in Japanese in Bulletin of the Research Institute of Mineral Dressing and
Metallurgy, Tohoku University, 27 (1971), 117.

(I) N.S. Gingrich: Rev. Mod. Phys., 15 (1943), 90.
(2) K. Furukawa: Rep. Progr. Phys., 25 (1962), 395.
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in time over many atomic configrations.

The main purpose of this work is to present a fundamental procedure in
X-ray diffraction study to determine the atomic distribution in monoatomic
liquids.

II. Analysis of X-ray intensity patterns
1. Fundamental scattering equation for monoatomic liquids

The method on the analysis for the observed X-ray intensity data was previ-
ously described by Furukawa®. The essential features are given below.

Expressed in electron units, a general form of X-ray intensity [/ SoMK)
scattered coherently from an array of atoms which takes all orientation is given by
the following relation.

I K) =5 5 fo f, 20K Tna), (1
n m K-r,,

where K=sinf/x,\ is the wavelength, 26 is the angle between the incident and
diffracted X-rays, f, and f, are the respective coherent atomic scattering factors of
the m-th and n-th atoms. Eq. (1) involves only the magnitudes of the distances
7w of each atom from every other atom. The summation in Eq. (1) should be
performed at first for the origin atom itself and next extending to all atoms (N)
in the system over all distances. In the case of one-component liquids, f, =f,=f
and f,f,=/2 Summations for the origin atom lead to unity, since in the limits
as Zun—0, st (K#y,)[K7my—1. So Eq. (1) may be written,

LK) =Nf*1 +zm¥7—:;"—)} , )

On the other hand, the structure of non-crystalline materials is expressed by
a density distribution function p (*). Here p (#) is the number of atoms per unit
volume at a distance r from the reference atom, and 4#7%p(r)dr is the number of
atoms contained in a spherical shell of radius r and thickness dr. The quantity
4nr’p(r) is called the radial distribution function (RDF).

The distribution of atoms about any reference atom may be regarded as a
continuous function and the summation in Eq. (2) replaced by an integral with
the radial distribution function. Besides, by means of the Fourier integral
theorem and RDF, Eq.(2) can be transformed to,

A7p(r) = dmripog(r) — dmrp, + 727’ j K[a(K)—1] sin (K -7) dK (3)
0
I37(K)
a(K) ~NfE (4)

where p () = pog(r), g (r) is the pair correlation function p, is the average density
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of atoms and the quantity a (K) is called the structure factor. The structure
factor a (K) can be obtained from X-ray diffraction experiments. Then, Eq.(3)
is the fundamental equation for obtaining RDF of monoatomic liquids.

2. Corrections for polarization, absorption and fluorescence

The X-rays generated at the target are not polarized, but became polarizing
after scattering by materials. Using the well-defined polarization factor (P), the
measured X-ray intensities are corrected.

P=%(1+cosz 20) , (5)

where 26 is the scattering angle.

The Bragg-Brentano focusing condition is maintained so that the absorption
correction is constant throughout. The absorption for an infinitely absorbing
material with a flat surface is given by®),

1 __sin(26-4)
Aﬂﬁsind—l— sin (20—4) ’ (6)

where 4 is the angle between the specimen surface and the primary beam and u
is the linear absorption coefficient of the sample. When the Bragg-Brentano
forcusing condition is employed, 4=6@, and the absorption correction simplified
to A=1/(2u). Hence the absorption correction is angle-independent and not
necessary for the Bragg-Brentano focusing system.

Fluorescent radiation from the sample is angle-dependent, but at present a
numerical calculation of its intensity is impossible. Hence we should avoid it as
far as possible by a suitable method. In this work, positioning of the filter in
the diffracted beam eliminated the fluorescent scattering, most of the Compton
scattering, as well as the contineous spectrum and the K radiation. Extraneous
radiation was also eliminated by a pulse-height analyzer in the detecting circuit.

Accordingly, the corrected intensities I°°* are obtained by deviding the
measured intensities I™®®* by the polarization factor.

3. Normalization

The corrected intensities must be reduced to the electron units and expressed
by the following relation,
al*r=N(Ig5h+1i3°) , (7)

where a is the convesion factor and often called the normalization constant.
There are two methods for determining a.
(A) High-angle region method(®)

This method is based on the assumption that the total scattering (coherent

(8) C.N.J. Wagner, H. Ocken, and M.L. Joshi: Z. Naturf.,, 20a (1965), 325.
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and incoherent) intensities and the observed corrected intensities are matched

together at large scattering angle (K>10 A -1). The normalization constant can
be calculated by dividing the area under the total scattering curve by the area
under the observed corrected intensity curve in the region of large K where there
are no longer modulations in the latter curve. The normalization constant a by
the high-angle region method is given by,

Koo10

K 3
[ s rinyak

a = oK
J max Jeor dK
K~ 10

(B) Krogh-Moe-Norman’s method (). (%)
This method can be derived by considering the behaviour of the expression

for the radial distribution function in the neighbourhood of »=0. At distance

approaching zero, the atomic distribution function p (#) is zero and sin (K.7)=Kr

and hence Eq.(12) will become

Kmﬁx
0 = dmrip, + %’ j K{a(K)—1](K -n)dK ,
0

hence,
—27t2po=J “K2[a(K)—1]dK . )
0
Using Eq. (4) and Eq. (7),
K inc
onaa max o I°" _N I¢y _ 1
Zﬂpo—Jo e g 1)K,
Kma I'inc 1
—2n2p0+j Kz[ ;’2‘ +1_de
a= e . (10)
J' I‘l‘lB,X}'(2 Iﬂ;)f dI{
0 f

This relation is more exactly derived by Krogh-Moe(¥ and Norman(®. The
normalization constant a is now determined by an analytical method.

4. Atomic scattering factor

The theoretical values of the coherent atomic scattering factor for X-rays are
numerically calculated and listed. But, when the energy of the incident X-
rays is similar to that of the electron in the specimen stoms, the coherent atomic
scattering factor f will be modified by an abnormal dispersion effect. The atomic
scattering factor corrected for the abnormal dispersion effect is in the following
form,

(4) J. Krogh-Moe: Acta Cryst., 9 (1956), 951.
(6) N. Norman: Acta Cryst., 10 (1957), 370.
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S =F+ i
fer=(f+4f )P+ (4))?

The new numerical values of 4f’ and 4f" are given by Dauben and Templeton (6)
and Cromer.

(11)

The wavelength of X-rays scattered by incoherent process is slightly longer than
that of primary X-rays. The incoherent scattering intensity in electron units is
given as,

I3 =B[Z—Z%\f4|%]

—3 (12)
B=[1+ —Sﬂﬁ‘Wsz] ,
where 7 is the Planck constant, c is the velocity of light, m is the electron mass,
K =4nm sin 0[\, and fg is the scattering factor for the K-th electron in the atom
and numerically given by Compton and Allison®).
As shown in Eq. (12), a shorter wavelength radiation and larger scattering
angle give rise to the increase of the incoherent scattering intensity. Hence the
separation of this scattering intensity from the observed intensity is one of the

important problems on the Fourier analysis of liquids.

II1. Results and discussion

The methods as mentioned in the previous section were applied to the X-ray
diffraction experiments for liquid mercury at 15°C observed by Waseda and
Suzuki®. The experimental arrangment for the measurement of the scattered X-
ray intensities from liquid metals was identical to the one described in the
previous paper 9,

1. Correction for the abnormal dispersion effect

The coherent and incoherent scattering intensities of mercury were calculated
by means of Eq. (11) and Eq. (12). These results are shown in Fig. 1. On the
coherent scattering intensity in electron units, there is difference at the region of K
less than 8.0 A-1 between the dispersion corrected atomic scattering factor and the
uncorrected one. Hence, we attempted to convert the observed intensities into
electron units by both of the atomic scattering factors and compare the results.

Fig. 2 shows the X-ray intensity curve of liquid mercury at 15°C in electron
units. Normalization constant (a) was derived by the Krogh-Moe-Nornan’s

(6) C.H. Dauben and D.H. Templeton: Acta Cryst., 8 (1955), 841.

(7) D.T. Cromer: Acta Cryst.,, 18 (1965), 17.

(8) A.H. Compton and S.K. Allison: X-ray in Theory and Experiments, D. Van
Nostrand Co., New York (1935), 116.

(9) Y. Waseda and K. Suzuki: phys. stat. sol.,, 40 (1970), 183.

(10) Y. Waseda and K. Suzuki: Sci. Rep. RITU, A23 (1971), 1.
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Fig. 1. Atomic scattering factor of mercury.
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Fig. 2. Intensity pattern of liquid mercury at 15°C.

method. Fig. 3 shows the structure factor a(K) obtained. Fig. 4 and Fig. 5§ show
the pair correlation function g(r) and the atomic radial distribution function 4772
p.8(r), respectively. As shown in these figures, the results with the dispersion
corrected atomic scattering factor seems to be more reasonable because the
spurious ripple in the pair correlation function at small r region is reduced. This is
corresponding to the physical meaning that the atoms do not approach one another
inside of the atomic diameter. Therefore this indicates that the correction for
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Fig. 4. Pair correlation function of liquid mercury at 15°C.

the abnormal dispersion effect on the coherent atomic scattering factor is impor-
tant.

2. Problem of the divergence of the slits

Normalization is the sensitive factor for the derivation of the structure factor
a(K). In generally, normalization constant (a) required to convert each intensity
curve to an absolute scale are obtained by two method as shown in section II-3.
Here, the discussion on the Krogh-Moe-Norman’s method being useful and
analytical method are given.

The values of a for various values of K are given in Table 1-(A). As shown
in Eq. (10) normalization constant should be constant for any values of K.
However, the decrease of a is observed with increasing the values of K and this
must be due to some systematic error which is connected with the scattering
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Fig. 5. Atomic radial distribution function of liquid mercury at 15°C.
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Fig. 6. Relation between the ratio of intenstities with various divergences and the scatte-
ring angle.

angle.

In order to clarify the existence of such an ambiguous error, the problem of
the slits was considered. The relation between the ratio of intensities with
various divergences and the scattering angle was obtained and the results are given
in Fig. 6. As shown in this figure, when the receiving slits (4) were changed to
give a different angular divergence, the ratio of intensities obtained did not have
the value given from the ratio of the divergences and this ratio was a function of
the scattering angle. This angular variation was significant in the larger



196 Yoshio WASEDA and Masayasu OHTANI
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Fig. 7. Function G(r) in the region below the first peak of the pair correclation function
of liquid mercury at 15°C.
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Fig. 8. Structure factor derived from g(r) with the spurious oscillations at small r removed
of liquid mercury at 15°C.

Table 1. Normalization constant (a) obtained in the analysis of
liquid Mercury at 15°C.

K (A1) 6.0 8.0 10.0 12.0
(A) 0.82 0.79 0.78 0.76
(B) 0.77 0.76 0.76 0.76

(A) wvalues without the correction for the divergence-ratio factor.
(B) wvalues with the correction for the divergence-ratio factor.

divergence. But this became almost negligibly small when the ratio of two small
divergences (4=0.4 and 0.5) was taken. This change may be caused by the
depth of penetration of X-ray beam in the specimen, curvature of the surface of the
specimen, and so on. But these factors are not quantitatively separated. From
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these reasons it was assumed that the values for the smallest divergence (4=0.4)
had no error and experimental values taken with larger divergences were
corrected by the factor derived from the measurements (Fig. 6). Table 1-(B)
shows the normalization constant obtained after correction for this divergence ratio
factor. These results show moderately constant value.

In the most of the previous reports on X-ray diffraction study of liquids, this
factor was not considered. But as above-mentioned, this factor should not be
negligible within the experimental error on the accurate analysis of the structure
of liquids by X-ray diffraction.

In case of the High-angle region method the normalization constant was 0.78.
The use of this method with the Krogh-Moe-Norman’s method at the same time
seems to be very avaiable for the normalization-procedure.

3. Reliability of the radial distribution function

The radial distribution function calculated by Eq. (3) must be carefully
examined before accepting as a final results, because usually it may include some
doubtful phenomena originating from experimental errors, unsuitable treatments
of several correction factors, or the termination effect which means the cutting-
effect of integration in Eq. (3) at maximum of K (hereafter to be refered to as K ,4x)
in place of infinity, and so on.

Such errors generally appear as spurious ripples or subsidiary maximum in
the atomic radial distribution function. The spurious ripples can arise from the
error in the measured intensity pattern at a discrete angular position as shown by
Klug and Alexander® or from the use of an incorrect value for the normalization
constant. The subsidiary maximum on either side of a main peak results from
terminating the Fourier integral at a finite value of K.

Generally, the major soruce of error is the unsuitable correction for the
absorption of the experimental data. But this is eliminated in the this work,
as mentioned above, by operating the diffraction to maintain the Bragg-Brentano
forcusing condition.

At first, the reliability of the radial distribution function is easily analyzed by the
shape of the curve in the range near »=0, where g(r)=0 theoretically. A general
shfit to positive or negative density in this region is possible, due to the mistakes in
the normalization correction. In Fig. 4 the result with uncorrected dispersion
effect shows the ripples in the range near »=0. that is larger than that of the
result with corrected dispersion effect. This is due to the unsuitable normaliza-
tion.

The reliability of g(r) depends upon the accuracy of a(K) directly and the
range of the Fourier integral which has to be performed in the range from K=0
to co as shown in Eq. (3), whereas in practice the available experimental data are

(11) K.P. Klung and L.E. Alexander: X-ray Diffraction Procedures, John Wiley and
Sons Inc., New York (1954), 586,
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limited to a lower value K,,;, and to a finite upper value K,,,, of K.

The significant errors arise from the inaccuracy of the extrapolation at the
small angular range where the scattered intensity cannot be resolved from the
primary beam and the abrupt termination of experimental data at the upper limit
of the angular range at which the diffratometer can be operated.

In practice the observed intensity curve at value of K less than about 1.20A-!
has been smoothly extrapolated to the K=0 value.

The value of a(0) is connected with the coherent small-angle scattering due to
the isothermal compressibility. This relation®) is,

Klifg a(K) = a(0) = poXrkT , (13)
where %k is the Boltzmann constant, X7 is the isothermal compressibility, p, is the
average atomic density and 7" is the absolute temperature. Hence we performed
the extrapolation with reference to the a(0) value.

According to the work of Egelstaff et al.(12) the value of 4(0) is nearly equal to
that of a(K) at K=(1/4)Kp for liquid metals, where Kp represents the position of the
first peak in a(K). Since K,,;,>(1/4)K, in this work, the extrapolation from K=
K ,in to K=0 may contain the considerable uncertainty.

So in order to learn how sensitive the pair correlation function was to the
extrapolation g(r) was calculated for several values of xr. It was verified that a
reasonably possible change in the a(0) level gives rise to changes in the resulting
g(r) which are not severe. As other researchers®3).(4) have also reproted, this is
mainly due to the circumstance that the contribution to the integral in Eq. (3) from
the region of small K is just a little hence the uncertainty for small angle coherent
scattering is insignificant.

Subsidiary maximum arising from the termination error are relatively easy to
trace as their positions are function of the upper limit of integration. They appear at
Ay =+57|2K 45 ~ £97[2K 4, according to the analysis of Sugawara(?) from the
main peak position. These peaks are marked with an arrow in Fig. 5. But, this is
the result for the discretely sharp peak, and the termination effect is not serious for
the broad peak observed in liquid. This is theoretically discussed by Morimoto(6).

Often we find a general ripple of nearly constant amplitude superposed on
the radial distribution function. As suggested by Finback®?), if the main diffrac-
tion peak is too high or too low due to experimental error, the ghost maxima or
minima will appear at (1/5)r,, (14-4/5)ry, (14-8/5)7,,...., where 7, is the position
of the main peak in the radial distribution function. About the result of liquid

(12) P.A. Egelstaff, C. Duffill. V. Rainey, J.E. Enderby, and D.M. North: Phys. Lett,,
21 (1966), 286.

(13) P. Ascarelli: Phys. Rev., 143 (1966). 36.

(14) G.T. Clayton and L. Heatom: Phys. Rev., 121 (1961), 649.

(15) T. Sugawara: Sci. Rep. RITU, A3 (1951), 39.

(16) H. Morimoto: J. Phys. Soc. Japan, 13 (1958), 1015.

(17) C. Finback: Acta Chem Scandi., 3 (1949), 1279.
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mercury at 15°C 7, is equal to 3.07 A. But as shown in Fig. 5 such the ghosts
disappear. In this work, the obtained radial distribution function of liquid
mercury at 15°C is almost free of ripples and hence the results seem to be reason-
able.

We shows another method of the check of the validity for the obtained radial
distribution function.

Kaplow et al.(® used the function defined as follows,

F(K) = K[a(K)~1] :r’ G sin(K -7) dr , (14)
and ' |

G(r) ~dmrpafg(r) 11— 2 | F(K) sin (-aK (15)
0
in order to show clearly the reciprocity between a(K) and g(») and to facilitate the
Fourier transformation operation. For the pair correlation function in the
region below the first peak g(r) is zero. Hence in this region, we find,

G(r) = —4mpyr , (16)

from which the average density p, of the liquid sample can be obtained, because
the initial slope is —4mp,. Therefore, the value of p, calculated by this mehod
gives a criterion for the accuracy of a(K) and g(r). Fig. 7 shows the behaviour of
G () in the region of small 7 for liquid mercury at 15°C. From the slope illustrated
in Fig. 7, the value of the average density p, is estimated at 0.041 atoms/A3, which
is in good agreement with the observed value, 0.0407 atoms/A3. The usefulness
of this method was also shown in the previous work concerning the X-ray Fourier
analysis for several liquid metals@®.(20)

It is not possible to be certain, with experimental data, that all errors have
been removed in fact, but the magnitude of remaining oscillations at small values
of r and the value of p, in the final G(») may be used as the check of over-all
efficiency of the procedures. Therefore, we ought to perform the Fourier trans-
formation and the inverse Fourier transformation between a(K) and g(r) repeatedly
within the experimental error. Fig. 8 shows the structure factor a(K) derived
from g(r) with the spurious ripples at small » removed and this is in almost good
agreement with the observed structure factor.

As shown in Fig. 5, the atomic radial distribution function of liquid mercury at
15°C remains some subsidiary maximum. But the structure of liquid mercury is
somewhat different from those of simple liquid metals such as A1, Pb@9, alkali

metals®) and so on. This problem was discussed in detial in the previous papers

R. Kaplow, S.L. Strong, and B.L. Averbach: Phys. Rev. 138 (1965), A1336.
Y. Waseda and K. Suzuki: phys. stat. sol., 39 (1970), 669.

Y. Waseda and K. Suzuki: phys. stat. sol.,, 49 (1972), 339.

N.S. Gingrich and L. Heaton: J. Chem. Phys., 39 (1961), 873.
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©),(10) Therefore, these subsidary maximum or ripples are due to not the
experimental errors and the termination effect but the specific character of liquid
mercury.

On the other hand, in order to obtain the information on the changes in the
resulting g(r) derived from the errors in the structure factor a(K) the pair correla-
tion function was calculated for several structure factors which were intentionally
modified. It was found that the errors in a(K) in the region of large K have
severely influence on the resulting region of small # in g(»). This suggests that
the correction for normalization is very important and the atomic scattering factor
should be corrected for the abnormal dispersion effect again. However the errors
of a(K) in the region of small K have frequently influence on the resulting region
of small 7 in g(7).

From these results, we should perform the Fourier transformation and the
inverse Fourier transformation between a(K) and g(r) repeatedly within the
experimental error and subsequently accept the radial distribution function
obtained as a final result.
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