

Preparation and Thermal Expansion of Pyrolytic Graphite-Bromine Residual Compounds

著者	AOKI Koichi, HIRAI Toshio, YAJIMA Seishi
journal or	Science reports of the Research Institutes,
publication title	Tohoku University. Ser. A, Physics, chemistry
	and metallurgy
volume	23
page range	149-149
year	1971
URL	http://hdl.handle.net/10097/27614

Preparation and Thermal Expansion of Pyrolytic Graphite-Bromine Residual Compounds*

Koichi Aoki, Toshio Hirai and Seishi Yajima The Research Institute for Iron, Steel and Other Metals

Abstract

Stable pyrolytic graphite-bromine residual compounds (PG(Br)) of various bromine concentrations ($100.\mathrm{Br/C}{=}0.3{-}12$) were prepared using PG deposited at 1900, 2100 and 2300°C. Preparation conditions and the thermal expansion in the direction of the c-axis of these compounds are described. Up to 1000°C the general characteristics of the thermal expansion of these PG(Br) are similar to that of PG(Br) made from PG heat-treated at 3000°C, but the thermal expansion coefficient of PG(Br) varies with bromine concentration and the properties of the original PG. The experimental results are interpreted by the following model: Bromine in the PG(Br) is bonded to the carbon network ionically at room temperature, but begins to vaporise to make gaseous bubbles between graphite layer planes at higher temperatures. These bromine gas bubbles expand against internal stress according to the ideal gas law. Therefore an increase in the average c-spacing of PG(Br) results upon heating.

^{*} The 1539th report of the Research Institute for Iron, Steel and Other Metals. Published in the Journal of Materials Science, 6 (1971), 140.