

X-Ray Measurement of Order in the Beta-Prime Phases of Noble Metal Alloys. I: 'AuZn

著者	IWASAKI Hiroshi, UESUGI Tomoko
journal or	Science reports of the Research Institutes,
publication title	Tohoku University. Ser. A, Physics, chemistry
	and metallurgy
volume	20
page range	222-222
year	1968
URL	http://hdl.handle.net/10097/27454

X-Ray Measurement of Order in the Beta-Prime Phases of Noble Metal Alloys. I. β 'AuZn*

Hiroshi Iwasaki and Tomoko Uesugi

The Research Institute for Iron, Steel, and Other Metals

Abstract

The long range order parameter of the β 'AuZn alloy of the $L2_0$ -type structure has been measured by X-ray diffraction at temperatures ranging from 200°C to 650°C, the latter temperature being 75°C below the melting point T_m . Relative intensities of several h00 type reflections from single crystals have been measured using a counter diffractometer equipped with a high temperature attachment. It has been observed that the order parameter gradually decreases with rising temperature but appears to keep an appreciably high value at T_m . An abnormal increase in the lattice spacing has also been observed at about 550°C, which corresponds to the onset of an appreciable disordering detected by the intensity measurement. It is concluded that β 'AuZn is a special type of ordered alloy and it would undergo a transition into the disordered alloy state, if it were not melted.

The root-mean-square displacement of atoms due to thermal vibration has been measured as a function of temperature. At room temperature the displacement is 0.125Å, 4.6% of the nearest neighbor distance, and increases to 0.255Å at 650°C.

^{*} The 1396th report of the Research Institute for Iron, Steel and Other Metals. Published in the Journal of the Physical Society of Japan, 25 (1968), 1640.