

The Magnetic Properties of Cupric Formate Tetrapydrate at Low Temperatures

著者	KOBAYASHI Hanako, HASEDA Taiichiro
journal or	Science reports of the Research Institutes,
publication title	Tohoku University. Ser. A, Physics, chemistry
	and metallurgy
volume	16
page range	168-168
year	1964
URL	http://hdl.handle.net/10097/27175

The Magnetic Properties of Cupric Formate Tetrahydrate at Low Temperatures

Hanako Kobayashi and Taiichiro Haseda

The Research Institute for Iron, Steel and Other Metals

Abstract

The magnetic susceptibility of single crystals of $Cu(HCO_2)_2 \cdot 4H_2O$ was measured at temperatures between 1.4°K and 80°K by a. c. bridge and magnetic balance method. This salt is an example of the magnetic two dimensional lattice. The interaction between Cu^{2+} ions is mainly the superexchange interaction through a formate ion in the same layer. From the Weiss constant of about -150°K, it is concluded that strength of superexchange interaction through a formate molecule, -(O-CH-O)-, has the same order as that through one diamagnetic atomic ion such as -(Cl)-. The existence of a broad maximum of the susceptibility at about 60°K implies the appearance of short range order in the two dimensional lattice. The antiferromagnetic transition accompanied by parasitic ferromagnetism was found at 17.0°K ±0.2 °K. The weak ferromagnetic moment in L_1L_2 plane was about 150 c. g. s. e. m. u. at 0°K. Along L_3 axis, no ferromagnetic moment was found. The susceptibility of isomorphous $Cu(HCO_2)_2 \cdot 2H_2O \cdot 2(NH_2)_2CO$ was similar to that of $Cu(HCO_2)_2 \cdot 4H_2O$.

^{*} The 1136th report of the Research Institute for Iron, Steel and Other Metals. Published in the Journal of the Physical Society of Japan, 18 (1963), 541.