

Low Temperature Ultrasonic Attenuation in Magnesium and Magnesium Alloys

著者	KODA Shigeyasu, KAMIGAKI Kazuo, KAYANO
	Hideo
journal or	Science reports of the Research Institutes,
publication title	Tohoku University. Ser. A, Physics, chemistry
	and metallurgy
volume	16
page range	113-113
year	1964
URL	http://hdl.handle.net/10097/27165

Low Temperature Ultrasonic Attenuation in Magnesium and Magnesium Alloys*

Shigeyasu Koda, Kazuo Kamigaki and Hideo Kayano The Research Institute for Iron, Steel and Other Metals

Abstract

The ultrasonic attenuation in pure Mg and Mg-Li and Mg-N alloys was studied in the temperature range from $4.2^{\circ}\mathrm{K}$ to $300^{\circ}\mathrm{K}$. In Mg, four peaks were observed in the attenuation vs temperature curves. The peaks were named as P_1 , P_2 , P_3 and P_4 from the low temperature side. P_1 was observed at about $20^{\circ}\mathrm{K}$ and the origin of which was confirmed to be the interaction between sound waves and conduction electrons.

The activation energies of the relaxation processes accompanied with P_2 and P_3 were obtained as 0.009 eV and 0.09 eV, respectively. The ratio between the activation energies for P_2 and P_3 agrees well with that calculated from Seeger's theory making use of the values of the critical resolved shear stress for the basal slip and the non-basal slip. Therefore, the relaxation processes related to P_2 and P_3 are confirmed to be dislocation movements in the basal plane and in the non-basal plane, respectively.

In Mg-Li alloys, the activation energy increased for P_2 but decreased for P_3 . In Mg-N alloys, the activation energy for P_2 was comparable with that of pure Mg.

The activation energy for P_4 was about 0.5 eV, and the value was considerably higher than that of the other peaks. Therefore, the origin of P_4 probably differs from that of the other peaks.

^{*} The 1126th report of the Research Institute for Iron, Steel and Other Metals. Published in the Journal of the Physical Society of Japan, 18 S-I (1963), 195. (Proceedings of the International Conference on Crystal Lattice Defects, 1962, Symposium)