

A Structural Model for Monatomic Liquids including Metallic Liquids

著者	FURUKAWA Kazuo
journal or	Science reports of the Research Institutes,
publication title	Tohoku University. Ser. A, Physics, chemistry
	and metallurgy
volume	12
page range	182-182
year	1960
URL	http://hdl.handle.net/10097/26973

ABSTRACTS OF PAPERS Not Published in This Report

A Structural Model for Monatomic Liquids including Metallic Liquids*

Kazuo FURUKAWA

The Research Institute for Iron, Steel and Other Metals

Abstract

Under criticism of the data of atomic radial distribution curves for eighteen monatomic liquids, a simple reduced-type structural model of liquids near their melting points having only one parameter A, which is the residual molecular diameter subtracted twice the root-mean-square amplitude of molecular vibration from the mean intermolecular distance r_1 , is proposed as follows: "Let V_0 be the volume at closest packing of spherical molecules of diameter A, then the volume of liquid at T_m is 1.5 V_0 for quasi face-centred cubic lattice. But about 10 per cent of the sites in this quasi-lattice are empty, and these spaces are distributed through all interstices explaining the second peak at 1.9 r_1 of the distribution curves. Thus the total volume is about 1.65 V_0 ."

Combining this model with the free volume theory several molecular properties of monatomic van der Waals and metallic liquids including spherico-symmetrical molecular liquids are explained; for example, the shapes and positions of 1st and 2nd peaks in the radial distribution curves, the entropies, the self-diffusion coefficients and the viscosity coefficients at their melting points.

^{*} Published in Nature, 184 (1959), 1209.