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Synopsis

A measurement of the galvanomagnetic tensors of bismuth at the liquid helium
temperature .and in the magnetic field up to 10 kilo Oersted is reported of three single
crystals with different crystallographic orientations. All non-vanishing tensor components
(except one) predicted by the crystal symmetry and Onsager’s reciprocal relation are
measured. The dependency of the symmetric tensor components on the direction of the
magnetic field is studied somewhat in detail. The experimental results are analysed semi-
phenomenologically on the basis of the Boltzmann equation. OQur experimental results of
the absolute values and the field dependencies for the symmetric and antisymmetric
tensor components respectively are such as expected theoretically in chemically pure
samples, The anisotropy of the tensor components of typical type is, however, fairly
small compared with that expected from the known energy surface anisotropy. This
shows the importance of the anisotropic scattering or a failure of usual approximate theory,
but unfortunately we could not obtain quantitative conclusion because a part of each
anisotropy should have been attributed to undesirable boundary effect and other effects.

I. Introduction

Since several years ago, the oscillatory phenomena of the galvanomagnetic
effect in metals at low temperatures have been called to the attention by many
researchers in connection with the oscillations of magnetic susceptibility and other
effects. Particularly those of bismuth have been extensively studied by several
authors.V™ These studies, however, were mainly confined to the oscillating part
and did not give so much attention of the relation between the oscillating part
and the non-oscillating part. This may be partly due to the fact that the oscillat-
ing part of bismuth could be analysed satisfactorily® (or apparently) by assuming
the shape of the energy surface of electrons or holes which are responsible for
the oscillation but the non-oscillating part colud not be explained without a
detailed knowledge on the entire Fermi surface. It is noted, however, that the
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theories of the oscillating magnetic susceptibility, galvanomagnetic, and other
effects in hand may not be based upon the firm foundation,* at least, for semi-
metals as bismuth and graphite, and that their applicability is not yet made so
clear. Satisfactory theory should explain quantitatively both non-oscillating and
oscillating parts. Any one has yet given no satisfactory result in both an ex-
periment and a theory.

In the present paper we report an experimental study for the galvanomagnetic
effect of highly refined bismuth single crystals at the liquid helium temperature
and in the magnetic field up to about 10 kilo Oersted. The first object of present
study was to obtain the anisotropy of the non-oscillating part in order to test the
validity of the assumption of the effective mass approximation usually used in
magnetic phenomena, but unfortunately we could not obtain a very satisfactory
result in view point of a phenomenological theory, i.e. of the crystal symmetry
and the reciprocal relation, because of very difficulty of the technique of measure-
ment in bismuth with very long mean free path in low temperatures. In the
present paper, however, we could give qualitative explanation for very remarkable
features of the galvanomagnetic tensors of bismuth.

II. Symmetry consideration of galvanomagnetic tensors

Bismuth crystal has the crystallographic symmetry ng. The crystal has one
trigonal axis and three binary axes in the perpendicular plane to the trigonal
axis We choose one of the binary axes and the trigonal axis as x- and z-axis
respectively. The orthogonal axis to them is taken to be y-axis. The crystal
is invariant by typical twelve symmetry operations of the space group but in the
symmetry consideration of the tensors we may consider the following six point
group operations” : (i) E (the unit element), (ii) C;* and C;~ (£120° rotation
around the trigonal axis), (iii) U (the rotation by = around x-axis), and (iv) UC;*
and UC;™.

The relation between the electric field and current is given by the formula

E;=%pi(H)Ju+ Zow(H) ]k, 1)
k k(1)

where E; is the electric field component, J, the current density component, and
oin(H) (or pix(H)) the symmetric (or antisymmetric) part of the resistivity
tensor component. Further there are the following reciprocal relations

pir (H) =pri(—H) , pir(H) =pki(—H) . 2)
By an operation R, o, (H) is transformed as
y/ '
o) =Rou® = 00 O 4 1), ®)

Y'Tﬁérséﬂairé”bésecil "upon the éffective mass éiﬁbroximation, Inadequacy of this approximation
in magnetic susceptibility of bismuth was discussed by E.N. Adams: Phys. Rev. 89(1953)
633.
(7) T. Okada (Mem. Fac. Sci. Kyusyu Univ. Bl (1955) 157) and H. J. Juretschke (Acta Cryst.
8 (1955) 716) gave the tables of the non-vanishing tensor components in wvery weak
magnetic field.
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where [ in the parenthesis is the direction of the magnetic field. If /is invariant
by the transformation of the coordinate,

o (V) =pu (D)
and if [/ is transformed into negative direction in the new system,
o () =pir (1) — i (D) .

With the use of the equations (2) and (3), we can determine the symmetry
property of the tensors, i.e. we can obtain non-vanishing terms of p;(I). For
example, by the operation U, p,,(x) should be invariant, whereas the right hand
terms of (3) becomes —p,,(x). Then pi(x) and ps(x) should be both zero.
We can do similar argument for the other components.

Thus the galvanomagnetic tensors in the magnetic field parallel to binary (x),
bisectrix (y) and trigonal (z) axes are given by

H|//x-axis
p(x)= 0 Py (%) 03z (%) + 052 (%) | (42)
H//y-axis 0 p;z (x> "‘pzz (x) 02z (x) J ’
e 03y (9) ~02x(¥) |
p(¥) = —0w(y) oy () 0z (¥) J (4b)
H//z-axis P:::(y) 0;2 ) () ’
0z (2) 02y (2) 0
p(2) = — sz (2) Py (2) 0 1 (4c)
L0 0 0:2(2) !

The vanishing of some tensor components can be used for the check of the
accuracy of the setting of the samples and the apparatus. The symmetric and
antisymmetric parts of p,.(x) can be separated by reversing the magnetic field
as usual.

III. Experimental procedure

The measurements are made mainly at 4.2°K. At this temperature the condition
wt>>1 may be satisfied at usual magnetic field strength with a moderate purity
of the samples (w is the cyclotron frequency and t the relaxation time of scatter-
ing with imperfection). We are, however, particularly interested in the anisotropy
of the galvanomagnetic effect of high purity bismuth, i.e. of bismuth with closely
equal number of electrons and holes. In order to satisfy this object the impurity
concentration should be less than 10~° per atom.

a) Preparation of the samples

The samples used here were prepared from Tadanac bismuth with the purity
of nearly six nine. Tadanac bismuth of about 500 gr was refined by the technique
of zone melting repeatedly by twenty four times with the zone-width of about
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2 cm and with a speed of about 15 cm per hour. With the use of the central one
thirds of the refined ingot, a large single crystal was grown by the Bridgman
method. We cut out three samples from this single crystal. The crystallographic
orientations were determined by the light figure method. The orientations are
shown in Fig. 1. The length of each sample is about 1.2 cm, and @ and d are
respectively 0.20 and 0.26 cm. The crystal axes may be set out as shown in Fig.
1 within the accuracy of +2°. The probable error comes from the unsharpness.
of the light figure made by the reflection from an etched principal cleavage plane.
The resistance of the samples after zone refining were measured at 4.2°K, 88.2°K

Bi 1 Bid i Ul and 296°K. The results are ].isFed in

x y , Table 1. Our result of the resistance

! 1 1 ratio p42°K/p206°’k is about 5 times the
' ratio in the lowest resistance crystal
reported”. From this data only, we can
not see how much the crystal was refined
by the zone melting but as shown in next
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. \z N F[Nx section we could get the results for the

i | __j galvanomagnetic tensors as expected

7 473 S theoretically in very pure samples. Then

Fig. 1. Crystallographic orientations of we believe that the large resistance in

samples. -, z-and y-axis are the zero field of our samples are not due to
binary, the trigonal and the third . . ... .

orthogonal axis respectively. chemical impurities but due to physical

imperfections.

Table 1. Resistances in zero jmagnetic field of zone refined bismuth
single crystals and the resistance ratio at 4.2°K to at 296°K.

. Resistance at 4.2°K ‘ Resistance at 88.2°K | Resistance at 296°Kl 04.2°K/0296°K

Bil 112x10Qcm | 3.66x105Qcm | 1.16 X 1074 2cm | 9.66 x10~%
Bil 1.48x 10-6%2cm \ 349x1058cm | 1.09x10742cm i 1.36 x 102
Bill 1.10x 10" 5%cm l 4.02x1075%2cm \ 1.75x 1074 2cm ‘ 6.29 x 1073

b) Apparatus

Resistances and Hall effects were measured by means of a D.C. low voltage.
potentiometer and a voltage sensitive galvanometer. The magnetic field up to 10
kilo Qersted was provided by a water-cooled electromagnet with a pole gap of 7.7
cm and a diameter of 13 cm. The|inhomogeneity of the magnetic field strength
over the specimen is less than 0.01%. The electric current strength through
samples was usually 0.1 A but in t}ne measurement of the longitudinal effect we
used 1 A to increase the accuracy.

Three samples were simultaneously set in a sample holder as shown in Fig. 2.
The lucite plate holding each sample can be pulled out from the brass case. The
brass case can also be put into the cupper case from its bottom with a lid.
Through a hole at one edge of the lid, the lead wires are pulled out and connected.
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with the outside circuits. This copper case enclosing three samples is immersed
in the liquid helium. The magnet can be rotated around the vertical axis. In
one measurement the magnet is rotated by 90° or more. After one run of the

Brass case

¢ 4

'
|
|
]
|
!
!
!
!

Fig. 2, Sample holder and arrangement of samples,

experiment, we rotate only the brass case by 90° around the horizontal axis,
leaving the lucite plates as the first set. Hence in the next run of the experi-
ment, the three samples are rotated by 90° around the long axis of the crystals.
At each run of the experiment, the current (only in the case of the longitudinal
effect) and the magnetic field are reversed. In the case of the transverse effect,
it is checked that the absolute magnitudes of the effect corresponding to the both
directions of the current closely coincide to each other. Principally we can obtain
all resistivity tensor components in Eq.s (4) by two runs of experiments as shown
in Fig. 2. But for the limitation of the time in keeping up the liquid helium,
we separated the measurements of the tensors into several runs.

IV. Experimental results

First we tested the Ohm’s law on the samples at zero magnetic field. Fig. 3
is a typical example of this measurement. Each point in the figure is the mean
value of the voltages at one current direction and the reversed. In the limit
of zero current, the voltage in each sample do not tend to zero but to negative
value. These may be due to the thermoelectric forces of outside circuits. Actually
in zero current through samples, the potentiometer showed negative voltages, its
values being almost equal to negative portions of the voltages extrapolated to
zero current in the vpltage versus current curves. Then, this must be corrected
in the voltage versus current curves to satisfy the Ohm’s law. In the measure-
ment of low resistance tensor we used a high current strength to diminish the
error arising from this correction.
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Fig. 3. Voltage versus current curves.

were well reproducible.

-5 Qcm
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In Fig. 4 are shown the longitudinal
tensor versus H curves. (We use the
simple word of ‘tensor’ in place of ‘tensor
component’). The reproducibility of
0x(x) and p,, (y) were fairly satisfactory
but not complete. On the other hand
that of p,.(2) was more unsatisfactory.
At weak field these components increase
very slightly with magnetic field but
at stronger field the magnitudes decrease
with the magnetic field. The decrease
of p..(z) with the magnetic field is most
prominent. The inset in Fig. 4 is the
behaviour of ¢, (2) in very weak and
moderate fields in which the condition
wt=1 may be satisfied.

In Fig. 5 are shown other symmetric
tensor versus H curves. On the contrary
to the longitudinal tensors, these curves

All p;(I) (i3el) are approximately proportional to H'.

10 , T T
gL

4

L 7=42K
Py ()

10 = -
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N $22€2)
‘r Pzz(z) 7
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2t -/ i 4
/
/] 1 ) 1 1
0 40 80 /20 QCe.
/67 i ! 1 1 | ] 1 1 !
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H (k Oe)
Fig. 4. The longitudinal tensor component versus H curves. The inset in the figure

is 0,,(2) in very weak and moderate fields.
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The anisotropy of the transverse components ¢;(/) (i3l) is considerably smaller
than that expected from extreme anisotropy of the energy surfaces of electrons
and holes which were deduced from the de Haas-van Alphen effect and the
cyclotron resonance. The tensors py.(x) and p;.(y) are characteristic of the
bismuth type lattice. Experimental results for these tensors are fairly smaller
than those of p;(I) (i%l) as is expected, particularly the magnitude of p;.(y) is
smaller by a factor 1072 but considerably larger than the longitudinal tensor p;; (7)
in strong field. These facts are discussed in the following section in detail.

T T T T —h T T T T
-/_.O.CII) L aem
/ T T T T , T T T T
I [ ]
F T=42K s .
" 3
L 2L
- -2
10 —
| Al
L ol
r al
5 2L
B 10°
’ i
i 4 6
/
/
L /
. 4l
/
/
I/
L /
/ o
/ 2L
i
/
/
-4
» / 10 |
- s 8
4 Py (Y)
B - sl
L - FER
|- E 2k 4
s 1 1 | L 1 1 1 /O—s | N 1 F NI
0.1 02 ot 06 o8 [/ 2 4 € 8 /0 o/ 02 04 o6 08 2 e s 8 /0
A (k Oe) 1 (k Oe)

Fig. 5. Symmetric tensor components versus H Fig. 6. Antisymmetric tensor components
curves. versus H curves.
Antisymmetric tensor versus H curves are shown in Fig. 6. All these curves
are nearly parallel in strong field and pz(}) (i, k, I are cyclic of x, y, 2z) are
proportional to H?'~24, The anisotropy of these tensors is also small and com-



42 Shoéichi MASE and Seiichi TANUMA

parable order of magnitude to that of the symmetric part p;() (xl). The

signs of py:(x), pz(y) and p%y(2) are all positive, ie. usual Hall coefficients are
all negative.

Qcm
/0./_ T T T ] /.O(EICIH
,Z i
10t E 10° -
L 7 -
/0'3_ . n /0’3 -
<
10° 1 St .
L g X
/0.5_— ] /O’S_ -
-4 i
10 ] /0'(’_ .
r = -
10— L | 1 ! R -7 ; | . !
=30 0 30 60 q0 /120 10 0 30 60 90°
Magnel angle ¢ Magnet angle ¢
Fig. 7. Symmetric tensor component 0,.(H) Fig. 8. Symmetric tensor component
versus the angle ¢ of the rotation of the 0.:(H) versus the angle ¢ of the
magnet. ¢ is varied about from ¢=0° at rotation of the magnet. ¢ is varied
H//y-axis to ¢=90° at H//x-axis. The about from ¢=0" at H//z-axis to
unit of the numerical values on each figure ¢=90" at H//x-axis.
is the magnetic field strength in kilo
QOersted.

Fig. 7,8, 9, 10, 11 and 12 are the plots of p,(H) wversus the angle of
rotation of the magnet with the parameters of the intensity of magnetic field.
At zero angle p;(H) becomes purely transverse component and at 90° p;(H)
becomes the longitudinal component. Although there is some irregularity because
of slight difference of the intensity of magnetic field in each point in each curve,
we can conclude that p;;(H) varies monotonically with the angle of the magnet
except for the possible entrance of a complicated angle dependency related to the
de Haas-van Alphen effect. p;(/) is extremely smaller than p;(l) (i3/) and with
a slight deviation from the longitudinal direction p;;(H) increase drastically. Thus
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107 1 T T
’, .
{/0’?:‘ ’_ .
10°F = j
< 12 ]
T 1 & 1
e -] ]
10°F - .
i 1 1
i0° | ] I - O“’ L ] i !
0 30 60 90 035 0 30 60 90 120°
Magnel angle ¢ Magnet angle ¢
Fig. 9 Symmetric tensor component Fig. 10. Symmetric tensor component p,,(H)
0yy(H ) versus the angle ¢ of the versus the angle ¢ of the rotation of the
rotation of the magnet. ¢ is magnet. ¢ is varied about from ¢=0" at
varied about from ¢=0° at H// H//z-axis to ¢ =90 at H//y-axis.

x-axis to ¢=90" at H//y-axis.

a slight misalignment of relative position of the magnet or the potential probes
to the longer axis of sample can cause such a drastic increase of the voltage
between resistance probes in the longitudinal case. In the measurement of
the longitudinal effect we paid particular attention in this point but the
non-reproducibility of p;;(i) as mentioned above may be in some part due to this
misalignment of the set.

V. Discussion

Several authors proposed the theories of the galvanomagnetic effect at strong
magnetic field¥. We obtained a flamework of the theory within the limitation of
the effective mass approximation, but in order to obtain quantitative predictions
we must determine the shape of entire Fermi surface and take account of an
anisotropic scattering by static imperfections (or lattice vibration). It is prema-
ture to try such calculation for a lack of complete knowledges on energy bands
and potentials of lattice defects (or lattice vibration spectrum). Then we see only

(8) P.N. Argyres: Phys. Rev. 109 (1958) 115,
R. Kubo, H. Hasegawa and N. Hashitsume : J. Phys. Soc Japan 14 (1959) 56.
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10" L ! L L JoT—L i I ! [
0 30 60 90 -30 0 30 60 90 120

Magnet angle ¢ Magnet angle ¢

Fig. 11 Symmetric tensor component Fig. 12. Symmetric tensor component p,,(H)
0..LH) versus the angle ¢ of the versus the angle ¢ of the rotation of the
rotation of the megnet. ¢ is magnet. ¢ is varied about from ¢=0" at
varied about from ¢=0° at H// x- H//y-axis to ¢=90" at H//z--axis.

axis to =90 at H//z-axis,

some theoretical aspect which can be discussed without referring to concrete
scattering mechanism.

In view point of principal object for studing monotonic part, we calculate
the tensors on the basis of the Bolzmann equation. The neglection of the quantum
effect should result to slight disagreement of the magnetic field dependency of
the tensors with the experiments. This will not become unsurmounted barrier
for understanding of the essential point, because we do not concern here with
the behaviour in the quantum limit and the de Haas-van Alphen type oscillation.
We would, however, do qualitative discussion of the quantum effect if necessary.
For brevity we assume ellipsoidal energy surfaces for both electrons and holes.
The electron energy surfaces are taken to be tilted three ellipsoids and the hole
energy surface to be single spheroid elongated in the direction of the trigonal
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axis.®»® 12  For both electrons and holes we assume energy independent relaxa-
tion time tensors r® which are respectively diagonal in the coordinate system in
which each energy surface is diagonal.!® The [ is the band suffix. In the same
system the diagonal mobility tensor x® is defined with the use of diagonal mass
tensor m®, electric change e¢® and ™ as

vV =eP7; O m®. 5)

In a magnetic field we calculate partial conductivity tensors in the coordinate
system referred to each ellipsoid and transform this to common coordinate system
referred to the crystal axes. The calculation under the above assumption is a
generalization of that of Abeles and Meiboom® and we write down only the result
in the magnetic fields parallel to x-, y- and z- axis:

H || x-axis
3O 1t <z”><x>m<”> o 0
C ( 2
0,<x> _ o 2 e D n(l) ’ug? (l) (l) (l) Z(e(l) n(Dc/Hx)F l)(x) <6a>
147 P(x)? 1+rm<> 1+ 7P )"
AP __Azj(eco 0)6/19}>1ﬁ<n< % RONCRON
1+1%P(x)? 1+ 1 Px)? 1+79x2 1,
Hj|y-axis
3 e 1@ty IO s~ sl
2
1+I"Py) 1+ I'P(y)° 1R — 12
Z(ew wPe ) TPyt
1+ (y?°
(
_ yPnCe H) V)" e~ iy (6)
o(y) = @) (OO0
1+r ( ) Mxx Mzz — Uxz
Z‘ ROMONOR 1+ (lw(y)/ﬂ;(vly)) r u)(y)z 2‘_€(D"(Dﬂi§g,,
1+r(1)< ) 1 +F(D(y>2

; :
Z (e D U)C/Hy) P(l)(y> Z e(l)n(l)ﬂyz) Z;e(bnﬂ)ug’z) i
\ 1+ P(y)? 1+ (y)?

(9) B. Abeles and S. Meiboom :Phys. Rev. 101 (1956) 544,

(10) B. Lax, K.]. Button, H.]. Zeiger and L. Roth: Phys. Rev. 102 (1956) 715,

(11) S. Mase: J. Phys. Soc. Japan 13 (1958) 434 and 14 (1959) 584,

(12) J.K. Galt, W. A, Yager, F.R. Merritt, B. B. Cetlin and A.D. Brailsford : Phys. Rev. 114
(1959) 1414,

(13) This is a specialization of the treatment for v(%2) by C. Herring and E. Vogt: Phys.
Rev. 101 (1956) 944,
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Hj/|z-axis
o PP D OIO) W2 .
SOyl
14T ( ) 1+ %) |
i 1
=) (€nPe/H,) pq)(z) PP o o
7= - ) Dy a2 |
)‘ 1+ ) 1+I'"(2) i
w; 0 0 Z (l) (D (1) 1 + (A(D<Z> /ﬂ(l)zz I—y(l)( )
| 1+7%9(2)° I

where I'Y(x), I'V(y) and I'(z) are dimensionless quantities proportional to H,,
H, and H, respectively. ﬂ,(-}) is i component of the mobility tensor 2® in the
coordinate system referred to the crystal axis and this is expressed by %, the
angle #® of the inclination of one axis of /-th ellipsoid from the trigonal axis,
and 120° symmetry. A%() is some function of ﬂ() and #® is the number
of electrons or holes in /-th band. 2 is the sum of /

Though above expressions were derived on the special model which we first
assumed, these can be applied to any many valley model as far as the energy
surfaces are ellipsoids with the trigonal symmetry. Corresponding to each model
we can easily calculate I"®(7), u(D and A®(). We give explicit expression of
these quantities in the case of three ellipsoids for electrons (I=1, 2, 3) and one
spheroid for holes (I =4). In order to make our study have intimate relation
to that of the energy band structure by the cyclotron resonance and the de
Haas-van Alphen effect, we rewrite the mobility tensor ,u,(]l) in terms of the

isotropic moblhty e {H/m, and dimensionless quantities (Txx , r§y ), Tzz , )
and (ri; ), Tzz )) as follows,

o =m0 (€ ),

T:S;) = (cos*d - ,Uz(_) +sin?f '#3(_>)/<e(_)70(_)/m0) ’

ve = (sin0 1 7+ cos i ) (€ 7m0 may), @)

(-

Tyz = =sinfcosf - (/,(3(—) -

1) 172 7 pmy),

+) +) <+) (+)

e =1 /(e [my),
(+ + (+) (+

Tzz = U3 /( )/m>

Four parameters m‘”) ,uz(‘> ug‘“> and 6 for electrons are replaced by (e, /m,),
Txx /Tzz ’ Tyy /T and T /r . Similarly ™ and ;" for holes are replaced
by ez my and T /r(+). ,a,(]l) of each band is shown in Table 2. In terms
of r(i) ') and A®(Z) are given by

= (= -)2 (=)
PO =" g (H2 ) = (55 1557 =157 (@0 )2, |
(2) 2 (3) 2 (—') \‘) 2 (“) (‘) 2.2 (‘) (—> 2 2
IF'Y(x32=TI'®xP=(py "p3 +3cos?0:py "py ~+3sinb.py " py ") (HE[Ac?)

=14- (57 =158 + 37507 (wore )2, (8a)
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+

)y +) +
re (x> 2= M1 M3 (HMZ/CZ) = (Txx )Tzz )> (ono(+)>2,

» O, w2, D W2
A7) = par — (1

w w W w W2 |
vy txz + Mzz ey — 2lxy Myz Mxz )l (.Uyy Hzz — Uyz )s ‘

Io(3)*= (costt-pn ' sinttm'” ) (HYJ) = (1575) (o0 )2,
TO()2=T9(y)2= By ptg +c0820- 10, pts +sin?0ep " pr" ) (H 12 Ac?)

=14~ B(ryy 15 =157 + 15070 (000 ) (8b)
Ir'o(y)?= .Ul( )/«‘3(+) (H 2 [c?) = (T:S;)ng)) (woz'o(+))2,

w (€)] W D2 w0 D2 OO0 w W 2
A <y> = Myy — (#zz Pxy + Mxx Uyz _Z#xy Hyz xz )/ (Hxx HMzz — Uxz ) ’

+

T2 =D (2)2 =T (2)2= (cos?- 11y 1y +sin?0-p 113 ) (Hc?)
-y (- (-
= (e 135 ) (0075 )%,

(22, @)
I'(2)?=m D (H L") =1z (0079 )%

8c)

w (OO w D2 (ONONO) W W w2
A(l)(@ =HUzz ~ (#xx tyz Uy ez —Zﬂxy Hyz ,sz)/ (#xx Hyy — HMxy ) J

Table 2. Mobility tensor components in common coordinate system.

! Pt ) 0 \ o e

2 ; (et 375 | TGt ) | N Yo r(y_})} I e
| | s

3 %CT;;+ 315) ; i B7set T32) rer - ‘/f(r;ﬁ— 2‘;}>\| — ‘/2_3——7’;) - é Tve

e

In the case of the isotropic scattering, T,(-f) is reduced to the effective mass
parameters aE,-’” in the ellipsoidal energy surfaces defined by

sV (P) = %}% (&% Pi+ oSy Pl + ol P+ 245 Py Py), (92)
c®(P)=— 2}5 (a5’ P+ ot Pl ol PD). (9b)
0

Then I'®(i) is reduced to the product of the cyclotron frequency »®(i/) and the
isotropic relaxation time 7,®. On the other hand, A%(i/) is related to the un-

quantized energy component e parallel to the magnetic field H; by the formula

eﬁf)=ﬁ2ki2/2mo-l<‘>(i) J(e® 7% /my). 1In fact the expression of Eq.s (6) is designed
to be continued naturally on the quantum mechanical calculation which is now
progressing.

There are two ways when comparing the experimental results with a theory.
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One is to compare theoretical conductivity tensor with experimental conductivity
tensor ¢ given by inverse tensor of p. This method can be adopted only when
all resistivity tensor components are measured consistently. The other is to
compare theoretical resistivity tensor ¢! with experimental p. When the calcula-
tion of ¢ is performed orthodoxically with no parameter, the latter method is
well suited. Unfortunately neither case is corresponded to our result. We consider,
however, that the latter is better in the present case.
The resistivity tensor p is given as follows:

H /| x-axis
" 1/02 0 0 “
"mﬂ 0 osld (%) —a5/4(%) —a3:JA(%) | (102)
0 — 052/ d(%) + 05 /A (%) Oyuyld (%)
where 4(X) =0,,0,.+ azzz - a;zz ,
H /| y-axis
¢ s2 a s a a s a \
% OyyCrz—0Oyz — 02205y~ Oyz0zx OyyOzxt 0yz0xy i
]- a a |
o(y)= agt-dl 02Oy + 0320%x GrsOsst Ton — Gpa0yz+ OryOex } (10b)
| — 0405 — 03207 — Ouulyz+ Oydx OraOyy+ Gy !
Hj/|z-axis
gam/d @) —aly4(2) 0 |
|
0@ = aiyld(2) 0/ (2) 0 (10c)
0 0 1/a.. \J

{ /oy
where 4(2) =a+d27 .
Of course these are in accordance with the phenomenological results in § 2.

a) Antisymmetric tensors

In the case H//z-axis, the resistivity tensor has the same character as in the
case of an isotropic energy surface. First we discuss of this simple case some-
what in detail. The tensor o%(z) is rewrited in

a eV n®e PO 1
Ixy(2) = Z H, Z """ H  1+I%z)?. (11

The ratio of the second term of % (2) to a,,(2) is the order of 1/I'(z), because
(g(l)n(l)c/ﬁz) ¢ 1

IS A S
eOnu  Hpw T -

Then we may neglect the second term of % (2) in a strong field. In fact we can

not explain the field dependency of o3 (2) by this second term. The first term of

azy(2)is rewrited as
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eYnYc_ _ enc dn
Z' H, B H, no‘ (>0, <12>

where n,=®n+xn™)/2 and dn=n"—n". From the experimental fact that
0y (2) ~1/2+ p,.(2) at H~8 kilo Oersted, we must assume that

M@ . aw@ __ (emc/H,) (dnjny) r®gdn <

0 (2) 0u(2)  €Pn P Ir® ()2 n
1.e.
dn 1
2 S g - (13)

Since I'™(z) is estimated to the order of 100~1000 at H~8 kilo Oersted and 4.2°K,
very slight excess of electrons is demanded to obtain the agreement with the
experiment. The field dependency of oy (2z) becomes
a dn/H, _ dn-H}
O @) 7 A2 HA 1 (B(dn)YH2) ~ Avit B(dn) H
| (AV>>B(4n)*H}?), (14)

where v, is the number of scattering centres. The other antisymmetric tensor

components py;(x) and pz:(y) should have also the same sign and similar field
dependency as pxy(2) in the classical approximation.

In an impure crystal such as 4#=#,/10 and in a pure crystal but in very strong
field such as 4dnjn,-I'*(z) >1, —a%(2) becomes larger than g,,(z) and we obtain
the resistivity tensor

owldly  —1/d% 0
0 (Z) = l/o-zy o'mx/azyz 0 (15>
1
0 0 1/o.. .

In the former case the tensor components become as follows

0% (D) ~Hjdnec ,  pum(Z)~pus,  02(2) ~poz. (16)

Antisymmetric tensor divided by H,—pix()/H, (i, k, I are cyclic of x, y, 2), is
related to usual Hall coefficient and in impure crystals the coefficient becomes a
constant independent of the magnetic field. These results are characteristic in
monovalent metals. On the other hand the latter case is related to the occurence
of the saturation in very strong field. In the present purity of samples, the
saturation field should be much stronger than our maximum field. Moreover the
behaviour in such strong field is essentially quantum mechanical.

Our experimental value of the monotonic part of pi%(l) is proportional to
H21~24 This result is comparable order of magnitude to that of Okada® (p4(2),
0y:(%) o H?0~21)  The absolute magnitude of our tensors px(z) and py.(x) are 8
and 3 times respectively the corresponding tensors by Okada. (He found, however,
nearly no anisotropy in py(z) and py.(x)). In the present theory the difference
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of the absolute magnitudes should be attributed to the differences in 4» and v,
since

a
a ~ Oxy (Z) . dnH;}?
Oxy (z> O ( x ) 2 Vsz , (173')
a
p;z(x%\'—w oy (%) . A”'?;} . (17b)

o'yy<x)0'zz(x> Vs .

The experimental result of the field dependency of pix(I) is much similar to
the theoretical prediction in a pure crystal rather than that in an impure crystal.
The discrepancy might be got rid of by taking account of the quantum effect
in the calculation of the symmetric conductivity tensors.

At first sight it seems that we can explain nicely both the absolute value and
the field dependency of the antisymmetric tensor in the above manner. There
are, however, many doubts to this explanation. First we have not any natural
explanation why the number of electrons always exceeds that of holes very slightly
in highly zone-refined crystals, as shown by negative Hall coefficients obtained
by Connel-Marcus, Okada and us. Secondly the absolute magnitude of pi ()
increases largely with the increase of chemical purity of the sample containing
some physical imperfections (this means that 4z becomes very small but v, is
the same order of magnitude). The dependency of the amplitude of the periodic
part on the purity of samples is also unexplained by the above scheme®. These
facts throw a doubt to the usual theory based on the effective mass approximation.
We would discuss of this further in the following section b).

Finaly we point out that the result of our rough analysis for the periodic part
seems to be in an accordance with those of the previous workers, though our
analysis is only a check for the crystallographic orientations.

b) Symmetric tensors

We begin with the longitudinal effect. According to the present theory the
longitudinal tensor p..(2) is given by

022 (2) = (2P0 P pY 14 g H 24 (in very weak field), (18a)

pz2(2) = (XLe®n®2V(2) ! (Hy—>00). (18b)

Since A(D(z) gui’; , we can say that p,.(2) increases monotonically from ()gz to the

saturation value p;;(z). In the special model with #=0, we obtain 2P (2) =ﬂ§lz) and
the longitudinal magnetoresistance disappears, i.e. 0..(2) =pgz. The experiment is
‘not the case. On the field dependency of p..(x) and p,,(¥), similar argument can
be made. In the latter case, however, A(D(x) <ﬂ§? and A(D( ) <u§§) even if 6=0.
While, except the second run for p..(z) (the inset in Fig. 4), each component
0;:(?) in the lowest magnetic field in Fig. 4 is much larger than the residual
resistance p?i. This difference is due to the fact that at the liquid helium tempera-
ture the condition I' (or wr)>1 is necessarily satisfied in presence of the lowest
field and the solution is in saturation region of that of the Boltzmann equation.
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Thus at lower magnetic field as I' (or wr)~1, the longitudinal tensor should
change the magnitude from the Boltzmann case to the higher field value. This
change from very weak to stronger field region is illustrated in the inset in Fig.
4. Afterward, due to the quantum effect the tensor may increase slowly with the
magnetic field, if the crystal is free from the slip surfaces or other boundary
surfaces. In our results all components increase slightly in the weak field, except
second run for p..(z), but in the stronger field each p;;(z) begins to decrease. This
negative magnetoresistance is undesirable effect for the present purpose. Similar
effect was found by Steele!® (p,,(x) and g,,(y) in antimony), Babiskin® (p,,(2)) and
Okada® (p..(x)). The fact that the values of pix and pgy at 4.2K measured out-
side the magnet are not in accordance shows the existence of the boundary effect.
From the crystal symmetry alone, ng and p_;)y should be in accordance and in fact
as shown as Bi I and Bi II in Table 1, these are nearly equal at liquid air and
room temperatures at which the boundary effect is negligible. Then this negative
magnetoresistance is related partly to inner boundary effects. In our data on this
anomalous magnetoresistance it does not exist any definite regarlarity such that
we can attribute this to, for example, the principal cleavage planes. Alekseevskii
et al'® attributed this negative magnetoresistance to the end effect due to a stray
current and a nonparallelism of potential electrodes. Since our three samples are
set in almost the same situation, the end effect is not primarily concerned but
the boundary effect and very slight misalignment are so.

Babiskin® measured the longitudinal tensors g..(x) and p,.(2) up to 60 Kkilo
Qersted and found that p..(2) is nearly constant up to 10 kilo Oersted but at
stronger fields p..(z) increases quadratically with the magnetic field. This quadratic
dependency is characteristic for the transverse tensor as seen from Fig. 5. Since
the transverse component is greater than the longitudinal component by a factor
larger than 10* at H >10 kilo QOersted, only slight misalignment of the potential
probes and the magnetic field relative to the referred axis could cause such
dependency due to the transverse component. Non-zero value of g, (x) found by
him should vanish from the crystal symmetry and reciprocal relation alone and this
may be partly related to the misalignment mentioned above. Considerable increase
of his curve I of p,,(x) in wide range of field is also essentially different from ours.

The result that the transverse components are extremely larger than the
longitudinal components arises from the cancellation of the antisymmetric conduct-
ivity tensor due to closely equal number of electrons and holes, as we have made
clear in the section a). The theoretical field dependency of diagonal transverse
tensor, for example o.,(2), in strong fields is

vs/ H.? _ veH;?
(Av?|H!) + (BUn)*|H?)  Av+B(dn)*H? ,
(AV2>BUn)*H2).  (19)

(14) M.C. Steele: Phys. Rev. 97 (1955) 1720 ; Conference de Physique des B.isses Tempera-
tures, Paris (1955) 415,

(15) N.E. Alekseevskii, N.B. Brandt, and T.I. Kostina : Sov. Phys. JETP 7 (1958) 924,

ez (2)
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In a rough approximation ¢,,(z) becomes proportional to HJ?/v,, On the other
components p;({) (¢3l), we obtain similar result though there is some complexity
due to the appearance of unfamilar type of tensor components in the cases of
the field parallel to x- and y-axis.

On the field dependency of the monotonic part, Alers and Webber? found that
0.:(y) »H"* and Okada® found that ¢..(2) and p.(x) are both proportional to
H'S, Our result p;(!) ~H' (i%l) is comparable order to theirs. The absolute
value of p,,(2) and p,.(x) are about 3.6 and 2.7 times the corresponding tensors by
Okada. This is expected from the fact that the residual resistances ﬂgx and ”pgz
of our samples are about 1/1.4 and 1/2.4 times respectively the correspondings
by Okada (pngl.GX 107% £2cm and 0,,~2.6x107¢ 2cm), ie. that v, of our samples
is smaller.

The disagreement of theoretical field dependency with experiments should be
got rid of by taking account of the quantum effect. The comparatively small
anisotropy of p;(I) (i3xl) should be noted. Analyses of the de Haas-van Alphen
type oscillation of susceptibility and galvanomagnetic tensors and also of the
cyclotron resonance give the values of a;; of electrons and holes (Table 3). Though
we can not regard these values to be decisive in the present stage of studies,
we temporarily use these and further we assume an isotropic scattering time
70 =7, for both electrons and holes. Under these assumptions and with a
rough approximation p;;(I) ~1/s;; (1), theoretical values of p;(l) yield

0w (%) ~1.07p, 0::(x) ~ 1500, 052(%)~—0.220,
(20)
022() ~1.080, 0::(¥) ~10.4p, 020 (2) ~241p,

for Galt et al’s values'> of a;; for electrons and holes, where o= (3,€%r,/m2,) " Wyt 2.
For comparison there is shown the value of py.(x) calculated by the approximate
formula p5;(x) ~ —05;(%)] 0, (%) 0..(x) and with positive a';°. This anisotropy
is almost along the same line with the experiment. Theoretical largest anisotropy
ratio 0..(¥) /o4, (x)~9.7 is, however, considerably larger than that of experiment.
Even if we take account of possible errors for the values of a;; and for the
experimental values of p;(l), this discrepancy may not be got rid of. It seems
that this result shows the importance of anisotropic scattering or a failure of the
usual effective mass theory. Unfortunately our experimental result does not

satisfy the symmetry relation p,.(2) =p,,(2) required from the phenomenological

Table 3. Effective mass parameters a,gf) from the experiments by
Galt et al® and Shoenberg?®.

B
Blectron® | 114 ] 1.46 | 114 | £10.1
Hole® \ 14.7 ‘1 14.7 | 109 | 0
Electron” | 417 { 0.8 [ 40 \ 4
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theory because of probable existence of the boundary effect in the transverse
components as well as in the longitudinal components. So we could not use
our data for examining quantitatively the intrinsic properties of bismuth, ie.
the anisotropic energy surfaces of electrons and holes, and the anisotropic scattering
by random lattice defects.

Finally we note of very large difference in the order of magnitudes of
0, 052(») and p,.(y). At H~8 kilo Oersted, the experimental ratio of these
quantities is

030 (¥) 1 032(9) & P () ~1 : 100 : 10000 (H~8 kOe.). 1)
This difference, of course, can be explained by Eq.s (10). p5.(¥) is given by

0y2(¥) = (= 0x:(¥) 95 (3) + 9%y (9) 02x(¥) ) [deta (y) .
In the numerator, the first term proportional to 1/H,* is clearly very smaller than
the second term proportional to 1/H,2. While the leading term of the denominator is
proportional to 1/H,!. Then py.(y) is approximately proportional to H,? in the
classical theory. As was expressed in the section a), dn/n, is estimated to the
order of 1/I" at H~8 kilo Oersted. We assume 47/n,~1/1000. Then we have

@ N _eme  dn 1 enc

sz(J’) - Hy nO 1000 Hy . (22)
On the other hand o% (y) is estimated by using the experimental data for a,(-,D .
We have

1 enyc

S~ (23)

for positive a§; . Then we get positive sign for py;(y) in accordance with the

experiment. The theoretical ratio of the tensor components is

iy (D) : 05:(3) ¢ 0(3) = (02 (3) 05 (3) +0%(3)?) 1 ooy (3) ()

(022(3) 04y (3) + 69 (9) D) ~ad2e(9)? : 0%y () 022(Y) : bozy()?
~1 : 250/a : 60000 (b/a), (a, b<<10 and H ~8 kOe.). (24)
This is right order of magnitude. p,,(2) — 0%, 05z2(x), 052(¥), and o7, (y) appear in

only the tilted ellipsoid model and the study for these components is useful to
elucidate the detail of the energy band structure.
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