

On the Magnetic Property of Iron Oxides

著者	KOJIMA Hiroshi		
journal or	Science reports of the Research Institutes,		
publication title	Tohoku University. Ser. A, Physics, chemistry		
	and metallurgy		
volume	6		
page range	178-185		
year	1954		
URL	http://hdl.handle.net/10097/26628		

On the Magnetic Property of Iron Oxides

Hiroshi KOJIMA

The Research Institute for Scientific Measurements

(Received February 6, 1954)

Synopsis

Pure α -Fe₂O₃ powder prepared by oxidation of Fe_{(CO)₅}, was reduced to Fe₃O₄ by the hydrogen stream containing water vapour. The magnetic properties were measured at each state of reduction and the reduced grade was checked by the chemical and X-ray analysis. Fe₃O₄ thus prepared, was oxidized again and it was proved that the changes of the magnetic properties during oxidation and reduction, coincide with one another.

I. Introduction

 γ -Fe₂O₃ has a spinel type crystal structure and a ferromagnetic property like Fe₃O₄, but α -Fe₂O₃ is rohmbohedral and non-magnetic, as shown in Table 1.

Table 1

	space group	lattice constant	magnetic property
$\begin{array}{c} \alpha ext{-}\mathrm{Fe_2O_3} \\ \gamma ext{-}\mathrm{Fe_2O_3} \\ \mathrm{Fe_3O_4} \end{array}$	rohmbohedral (corundum) cubic (spinel) cubic (spinel)	5.42 Å 8.4 Å 8.4 Å	paramagnetic ferromagnetic ferromagnetic

And it has been recognized hitherto by many researchers that Fe_3O_4 is oxidized to $\alpha\text{-Fe}_2O_3$ by way of $\gamma\text{-Fe}_2O_3$; $\alpha\text{-Fe}_2O_3$ is reduced directly to Fe_3O_4 and do not pass through the state of $\gamma\text{-Fe}_2O_3$; that is, the $\alpha\to\gamma$ transformation of Fe_2O_3 is irreversible and $\alpha\text{-Fe}_2O_3$ is reduced directly to Fe_3O_4 as follows:

$$Fe_3O_4 \xleftarrow{\text{oxidation} \rightarrow \gamma\text{-Fe}_2O_3 \rightarrow \text{transformation} \rightarrow \alpha\text{-Fe}_2O_3}$$

However, a few researchers observed that very fine α -Fe₂O₃ powder on an iron surface changed reversibly to γ -Fe₂O₃.⁽¹⁾⁽²⁾

Fine α -Fe₂O₃ powder was prepared from Fe(CO)₅ and it was heat-treated in the range 250°C to 700°C in hydrogen stream with water vapour. Fe₃O₄, thus prepared, was gradually oxidized again in vacuum.

The magnetic properties and the ratio of ferrous and ferric ion of these iron oxides were compared. And it was concluded from these experiments that $\alpha\text{-Fe}_2O_3$ might have been changed to Fe $_3O_4$ by reduction by way of the state of $\gamma\text{-Fe}_2O_3$; also in this case the relation between the magnetic properties and the chemical compositions of these oxides was obtained.

⁽¹⁾ T. Iimori, Nature 140 (1937), 278.

⁽²⁾ T. Iimori, Sci. Pap. I.P.C.R. Tokyo 34 (1937), 60.

II. Preparation of sample

Very fine, pure α -Fe₂O₃ powder was prepared from an iron carbonyl. The oxi-

dation process and apparatus had already been reported by the present author. The mixed iron oxides obtained from $Fe(CO)_5$ were heated at $550^{\circ}C$ for 2 hrs. in the air, in order to remove ferrous ion and carbon.

The powder thus prepared was dark red and non-magnetic and about 0.1μ in mean diameter. Fig. 1 shows an electron microscopic photograph of the powder.

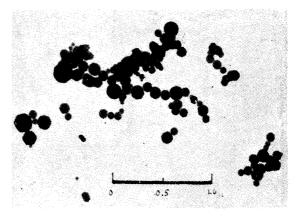


Fig. 1. Electron microscopic photogram for α-Fe₂O₃ powder.

III. Experimental details

The furnace arrangement for oxidation and reduction is illustrated in Fig. 2. For reduction, hydrogen is led to a flask D from a high pressure vessel A, through a gas meter B and a flow meter C. The volume of D is about 1L and is filled

with distilled water about 600 cc. The flask is heated by an electric heater and the temperature of distilled water is kept constant by a thermometer E. The hydrogen is saturated with the water vapour in the flask and then sent to a porcelain tube F. The tube F is about 1 m in length and 30mm in inner diameter

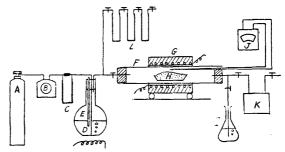


Fig. 2. Schematic view of furnace for oxidation and reduction.

and is heated by a movable electric furnace G. The powder, weighing about 15g, is heated in the tube F on a porcelain boat. Gas is exhausted through a water seal I. J is a milivoltmeter for a thermojunction. The furnace is evacuated about to 5/100 mmHg by a vacuum pump K for oxidation process. L is U tube, containing with P_2O_5 , and is used for measuring the vapour content in hydrogen stream.

In this furnace, α -Fe₂O₃ powder obtained from Fe(CO)₅ was reduced at various temperatures by the constant hydrogen stream containing water of various ratio. And then, Fe₃O₄ thus prepared, was oxidized again in vacuum at various temperatures.

Packed in a grass tube, the magnetic properties for these powder were measured by a solenoid and a ballistic galvanometer. The chemical and X-ray analysis

⁽³⁾ H. Kojima, Rep. Res. Inst. Sci. Meas., Tohoku Univ. (Japanease) 2 (1952), 101.

⁽⁴⁾ T. Okamura, H. Kojima, Y. Kamata, J. App. Phys., Japan. 21 (1952), 9.

were also carried out for all samples.

IV. Magnetic behaviour of α-Fe₂O₃ during reduction

 α -Fe₂O₃ powder, prepared from Fe(CO)₅, was reduced in the furnace, illustrated in Fig. 2, and the magnetic behaviour during reduction was observed.

Table 2

Flow of H ₂	Temp. of H ₂ O	$P_{ m H_2}/P_{ m H_2O}$
300 cc/min	90°C	1.11
450 cc/min	90°C	0.83
550 cc/min	90°C	0.62

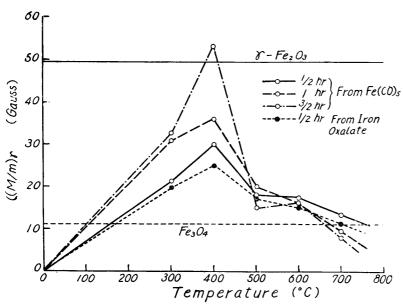


Fig. 3. Magnetic remanence vs reduction temperature for $\alpha\text{-Fe}_2O_3~(F_{H_2}/P_{H_2O}\!=\!0.83)$

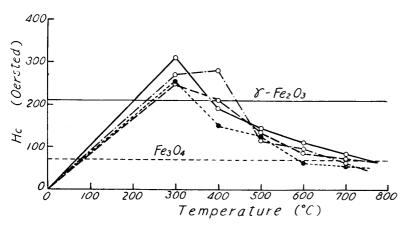


Fig. 4. Corecive force vs reduction temperature for α -Fe₂O₃ $(P_{\rm H_2}/P_{\rm H_2O}\!=\!0.83)$

That is, the α -Fe₂O₃ powder was reduced at $300\sim700^{\circ}$ C in the hydrogen stream of $200\sim600$ cc/min and the temperature of distilled water was varied from 70° to 90° C.

The ratio of $P_{\rm H_2}/P_{\rm H_2O}$ in hydrogen stream was measured from the change in weight of P_2O_5 and illustrated in Table 2.

Fig. 3 shows the change of magnetic remanence per unit mass vs. the reduction temperature of α -Fe₂O₃ for $P_{\rm H_2}/P_{\rm H_2O} = 0.83$. In the figure, full line, broken line and chain line mean 1/2 hr, 1 hr and 3/2 hrsreduction respectively, and the dotted line illustrates the magnetic property of α-Fe₂O₃ for 1/2 hr reduction, which was prepared from iron oxalate. The full and broken parallel lines to the abscissa show the magnetic property of 7-Fe₂O₃, prepared from Fe(CO)₅ and natural

 Fe_3O_4 powder respectively. And the above notations are common in Figs. $4{\sim}10$. In this experiment, the changes of remanence for the oxide powder were shown instead of the saturation value, because the difference of remanence between

 γ -Fe₂O₃ and Fe₃O₄ was more remarkable than the saturation, and the slight change at every reduced state could be easily distingushed from these results.

Fig. 4 shows the change of coercive force due to the reduction temperature. From these figures, we can see that the magnetic properties of α -Fe₂O₃ approach to the properties of γ -Fe₂O₃ at 350 \sim 450°C, and coincide with that of Fe₃O₄ at about 600°C. In general, the increase of

the reduction hour brings the advance of the reduction, but it seems that the reduction time of 3/2 hrs is almost enough to finish the reduction.

Figs. 5 and 6 show the change of magnetic properties of α -Fe₂O₃ during reduction of $P_{\rm H_2}/P_{\rm H_2O}$ =1.11, and Figs. 7 and 8 show the case of $P_{\rm H_2}/P_{\rm H_2O}$ =0.62.

The values were plotted in these figures only for the results of 1/2 hr reduction and they illustrate that the magnetic properties of α -Fe₂O₃ change in the same way in Figs. 3 and 4, but

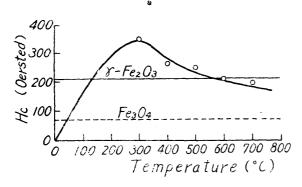


Fig. 8. Corecive force vs reduction temperature for $\alpha\text{-Fe}_2O_3$ $(P_{H_2}/P_{H_2O}\!=\!1.11)$



Fig. 5. Magnetic remanence vs reduction temperature for $\alpha\text{-Fe}_2O_3~(P_{H_2}/P_{H_2O}\!=\!0.62)$

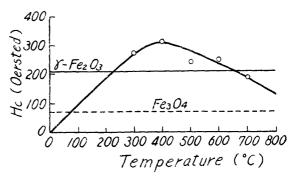


Fig. 6. Corecive force vs reduction temperature for α -Fe₂O₃ ($P_{\rm H_2}/P_{\rm H_2O} = 1.11$)

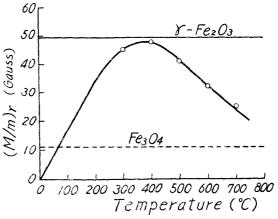


Fig. 7. Magnetic remanence vs reduction temperature for α -Fe₂O₃ ($P_{\rm H_2}/P_{\rm H_2O}$ = 0.62)

the reduction point decreases with the decrease of $P_{\rm H_2}/P_{\rm H_2O}$.

V. Magnetic behaviour of Fe₃O₄ during oxidation

It was found from the above experiments that the magnetic properties of α -Fe₂O₃ coincided almost completely with one of Fe₃O₄ by reduction at 600°C for

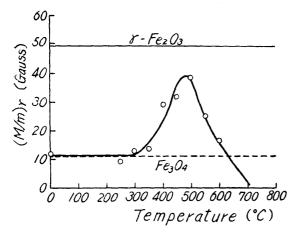


Fig. 9. Magnetic remanence vs oxidation temperature for Fe₃O₄ (vacuum)

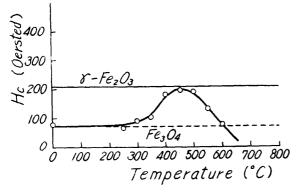


Fig. 10. Corecive force vs oxidation temperature for Fe_3O_4 (vacuum)

3/2 hrs in the gas for $P_{\rm H_2}/P_{\rm H_2O}=1.0$.

And also, it was proved by chemical and X-ray analysis that the powder might be Fe_3O_4 .

Then, pure Fe₃O₄ powder was prepared by this process and gradually oxidized by the use of the apparatus shown in Fig. 2 in the vacuum of 5/100 mmHg. The changes of $(M/m)_r$ and H_c by oxidation for 1/2 hr are illustrated in Figs. 9 and 10.

From these figures, it was found that the magnetic properties of Fe₃O₄ approached the properties of γ -Fe₂O₃ by oxidation at 400°C for 1/2 hr and it was changed to a paramagnetic state above 700°C. And this may illustrate the oxidation process, Fe₃O₄ $\rightarrow \gamma$ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃, which has been recognized by many researchers.

The difference of the magnetic properties between $\gamma\text{-Fe}_2O_3$ and the oxidized Fe₃O₄ at about 400°C signifies the co-existence of $\alpha\text{-Fe}_2O_3$. Then,

 γ -Fe₂O₃, prepared from these process, may be stable at a lower temperature than 400°C.

In fact, the γ -Fe₂O₃ is transformed to α -Fe₂O₃ at about 300°C⁽⁵⁾, but very stable γ -Fe₂O₃ was also found, which was ferromagnetic even above 800°C.⁽⁵⁾ And the stability might be due to impurities included, of which we can not give a definite conclusion.

VI. Chemical analysis

Chemical analysis was carried out on all samples in the course of oxidation or reduction. That is, the sample is first solved in aquous H₂SO₄ solution in CO₂ atmosphere and ferrous ion is measured by titration of KMnO₄. Then, the sample is reduced by Zn amalgum and total iron are determined again by the titration.

⁽⁵⁾ T. Takei, J. Japan Inst. Metals 16 (1952), A321.

Fig. 11 is the change of the ratio of total iron to ferrous ion in the case of reductin, for which the specimens were treated in the atmosphere for $P_{\rm H_2}/P_{\rm H_2O}=0.83$ at various temperature for 1/2, 1 and 3/2 hrs respectively. The ratio is decreased smoothly with higher temperature and α -Fe₂O₃ is partially reduced to Fe₃O₄, but still ferric ion fairly remains between 400°~500°C, at which the magnetic property shows maximum. For the oxidation of Fe₃O₄ in vacuum, also, the monotonous increase of the value, $(Fe^{++}+Fe^{+++})$ /Fe⁺⁺, was observed, as shown in Fig. 12; a fair amount of Fe₂O₃ is recognized at about 500°C at which the magnetic property of Fe₃O₄ approaches one of \(\gamma \cdot \text{Fe}_2 \text{O}_3 \) and we cannot find any anomaly on the oxidation curve.

VII. X-ray analysis

X-ray diffraction patterns were observed for all samples through the whole process. But the Debye-Scherrer's patterns which are now the problem from the results of the magnetic measurements, will only be discussed here. That is to say, α -Fe₂O₃ reduced at 400°C for 1hr in the mixed gas of hydrogen and water vapour (No. 1) and Fe₃O₄, oxidized at 500°C for 1/2 hr in vacuum (No. 2) which had both a magnetic property like γ -Fe₂O₃, were compared with γ -Fe₂O₃ (No. 3), natural magnetite (No. 4) and α -Fe₂O₃ (No. 5) by X-ray analysis. Here, No. 1, No. 2, No. 3 and No. 5 were respectively prepared from Fe(CO)₅ as

Fig. 13 shows the intensity curves, obtained by a microphotocomparator from the half side of these Debye rings, containing few rings on the opposite side. Experimental conditions and results obtained by X-ray analysis are put in order in Table 3; the relative intensity and radii of Debye rings of No. 1~No. 4 could not be distinguished from one another in these curves.

mentioned above.

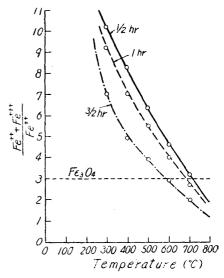


Fig. 11. Chemical composition vs reduction temperature for α -Fe₂O₃ $(P_{\rm H_2}/P_{\rm H_2O}{=}0.83)$

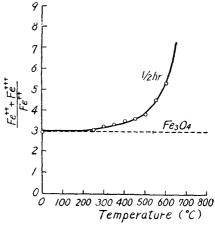


Fig. 12. Chemical composition vs oxidation temperature for Fe_3O_4 (vacuum)

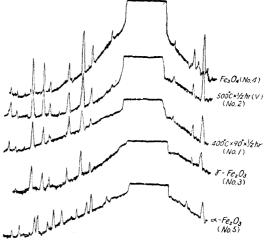


Fig. 13. Intensity curves of Debye rings for various iron oxides.

Τ	'a	bl	e	3

No.	Material	Atmosphere	Heating time	Heating temp.	Crystal structure
1 2 3 4 5	$lpha ext{-Fe}_2 ext{O}_3 \ ext{Fe}_3 ext{O}_4 \ ext{$\gamma ext{-Fe}_2 ext{O}_3$} \ ext{Fe}_3 ext{O}_4 \ ext{$lpha ext{-Fe}_2 ext{O}_3$}$	H ₂ +H ₂ O Vacuum —	1 hr 1/2 hr — —	400 C 500°C — —	cubic (8.4Å) cubic (8.4Å) cubic (8.4Å) cubic (8.4Å) cubic (8.4Å) rhombohedral (5.4Å)

Summary

The following results were obtained from these experiments:-

- (1) The magnetic properties of α -Fe₂O₃ get near the properties of γ -Fe₂O₃ at about 400°C and then coincide with one of Fe₃O₄ at 600°C by reduction for 1 hr in the mixed gas of H₂ and H₂O.
- (2) The magnetic properties of Fe_3O_4 approach one of γ - Fe_2O_3 and then α - Fe_2O_3 by heating for 1/2 hr in vacuum at 500° C and 700° C respectively.
- (3) By chemical analysis, these iron oxides, which seem to be γ -Fe₂O₃ from their magnetic properties, are both the mixture of ferrous and ferric ion.
- (4) By X-ray analysis, the Debye-Scherrer patterns of these two oxides, γ -Fe₂O₃ and natural magnetite, cannot be distinguished from one another.

From above results, these oxides may be a mixture of Fe_2O_3 and Fe_3O_4 . At first, they might be reasonably considered as a solid solution of Fe_3O_4 and α - Fe_2O_3 , because, if they were a mechanical mixture of Fe_3O_4 and α - Fe_2O_3 , the Debye rings of α - Fe_2O_3 would have to be found in their X-ray patterns and their remanence

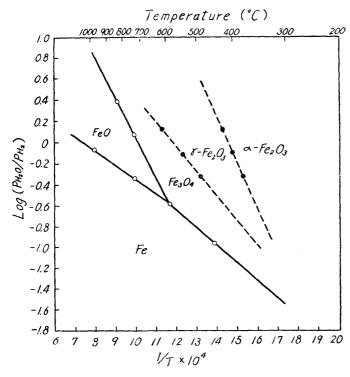


Fig. 14. Equilibrium of the solid phases in the system with iron, iron oxides, hydrogen and steam.

would be smaller than one of Fe₃O₄. But from the experimental results, we could not observe the both phenomena.

If they were a solid solution of Fe_3O_4 and α - Fe_2O_3 , the diameter of Debye rings must be changed gradually with their compositions, and it could not be seen in the present photographs, though it may be found by a more precise experiment. If the oxide were a solid solution of Fe_3O_4 and γ - Fe_2O_3 , the Debye rings would almost coincide with the rings of Fe_3O_4 . In this case and the case when it was a mechani-

cal mixture of Fe₃O₄ and γ -Fe₂O₃, it should be concluded that γ -Fe₂O₃ was always produced from Fe₃O₄ by oxidation or α -Fe₂O₃ by reduction.

Hitherto, it has been reported that $\gamma\text{-Fe}_2O_3$ could be produced from Fe $_3O_4$ by oxidation at a lower temperature, but it was imposible to obtain from $\alpha\text{-Fe}_2O_3$. That is to say, it has been recongnized that the transformation of $\gamma\text{-Fe}_2O_3$ to $\alpha\text{-Fe}_2O_3$ is irreversible.

On the other hand, it was found by T. Iimori⁽¹⁾⁽²⁾ from the results of electron diffraction study of iron oxide film, that very fine α -Fe₂O₃ powder on iron surface was changed to γ -Fe₂O₃ by heating at 330°C for 40 min.

In the present experiments, it may be reasonably concluded that very fine α -Fe₂O₃ powder, prepared from Fe(CO)₅ is transformed to γ -Fe₂O₃ by way of the reduction to Fe₃O₄. And the γ -Fe₂O₃ has a larger corecive force and remanence but smaller saturation value than Fe₃O₄ in powder form.

Then, it may be roughly supposed that the γ -Fe₂O₃ region should be added in the phase diagram of the iron-oxygen system as shown in Fig. 14.

The study was supported partly by the Grant in aid for the Fundamental Scientific Research of the Ministry of the Education. The author wishes to express his hearty thanks to Prof. Tosihiko Okamura for his kind guidance through the whole course of experiments.