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Synopis
The spontaneous magnetization of the ferromagnetic substance was discussed on the
basis of the collectiive electron model, the result of which was applicable to the case of
an intrinsic semi-conductor. Sudden disappearance of spontaneous magnetization in some
kinds of ferromagnetic semi-conductors was expected form the present theory. This
result coinsided with the experimental data on CrS by Haraldsen and Neuber.

I. Introduction

Several researches on tke origin of ferromagnetism have been published based
on the collective model of metals and semi-conductors. Stoner once developed a
formalism of spin reorientation based on the said model and thereupon several
writers made some discussions on the ferromagnetism of metals of various
electronic structures.® At that time the present authors also discussed the ferro-
magnetism due to this model by applying the Fermi-LCirac statistics to the distri-
bution of electronic spins taking the exchange interaction between each pair of
electrons into account. This method of discussion was subsequently extended to
several interesting cases of ferromagnetism of metals and semi-conductors and some
theoretical conclusions were deduced based on this ideea. The said investigation,
however, was completed during the unhappy period (1941-1945), during which
Japan’s diplomatic relations with the Fowers were broken off, and contrary to our
custom the above mentioned first report was published only in Japanese but not
in any Europian language. Since then some questions have been referred to con-
cerning the metkod of investigation of the subsequent researches already published.
So, the summeary of the above mentioned first report on the collective electron
ferromagnetism will be given below. As seen in the last part of the present
report the theory was, at that time, applied also to the discussion of the ferro-
magnetism of semiconductors. At present, a part of the problem has been solved
with success by the localized mocel of solid. For certain kinds of ferromagnetic
semi-conductors, however, the explanation of the phenomena from the side of the
collective electron model would be supposed to be closer than that from the
localized one and, hence, a discussion developed formerly based on the present
theory will also be given on this occasion.

* The 683 rd report of the Research Institute for Iron, Steel and Other Metals. Published
in Japanese in the Nippon Sugaku-Buturigaku-Kai Kaisi, 17 (1943), 92.

** The Professor of tte Faculty of Science, Hokkaido University.

(1) A full bibliographic survey was given by Wohlfarth : Phil. Mag. 42 (1951), 374.
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II. Collective electron ferromagnetism

First, let us consider the free energy of the electronic system under the external
magnetic field taking into account the interaction among the electrons under
consideration. These electrons are supposed to lie in-a periodic field of force due
to the metallic lattice. Let N be the whole number of electrons under consider-
ation and U (N, H) be the total energy. Then, after dividing the domain of the
electronic evergy bands into a number of small ranges 4E, (k=1, 2------ ), denote
the average of energy niveaus in the range 4E, by E, and the number of the
energy levels existing in it by Z,, the spin orientations being taken into consider-
 ation, and suppose that N, electrons are occupying these Z, levels. The energy
levels in the same range are chosen to correspond to the same spin orientation.
As to U and N, the following equations are established,

U= 2 NE, +f(Nyy Np-ooeo D, (1)

N=3N,, (2)
where f(N;, Ny ) is the addive energy depending on the distribution of electrons
to their respective levels. If we take only exchange energy into account, then f

will take the form (8) given in the following paragraph. Now, if W is the
number of the state (Z:, N,) for a set of the values of N, U, H, it will be

W=ng.'/Nk!<Zk—Nk>!, (3)
and, accordingly, the entropy @ of this system will be expresed as
_ _ _ Ne (1= Ne _
0=rklog W = };Zk{logzk 7 1og Ne (1 7 Yog (2. No} (1)

If both U and N are assumed to be constant for the time bzing, a remarkable
maximum will be obtained at a certain value of (&V,), and in this case W in the
above egquation may be substituded by Wp.,. Such a set of (N,) can be given in
the following expression by a proper choice of indeterminate multipliers « and $
corresponding to Egs. (1) and (2).

N./Z,=1/{1+exp (a+BE;+B(Of[ONL) }. (5)
In putting the value of this (,) in the formula (4), we may consider ;, for

convenience’ sake, as follows: Each energy level is enumerated by 7 (i=1, 2, ------ )

in order of energy values of levels. {----- } under the sign of summation 2 in
k
the right hand side of (4) gives the same value for all the energy levels belonging

to the energy range 4E;; hence, Z,{---:-+ }x is equal to the sum of the value for
each single energy level of that term; thus we may rewrite it as

%Z"{ ...... Yo = Zi:{ ...... i
Hence

log W=; {log Z.— (N/Z,) log N,\— (1= N\/Z) log (Z,— N} . (6)

By rewriting the form of log W by means of (5), we obtain the following
expression :
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log W= 5. log {1+exp(—a—BEi— B@f/IND)} +aN+BE+ B (AN (k) , (7)

where #n;,(k) denotes N,/Z,, and expresses the probability of being occupied by
electrons given to the state ¢ belonging to the energy interval 4E,.

Here, let us limit our problem only to ferromagnetism. In this case, as ex-
plained in the former paragraph, the interaction energy f among the electrons is
given by —JS*/L, in which S is the spin quantum number of the system, L the
number of atoms and J the exchange integral corresponding to the exchange of a
pair of electrons. In order to rewrite the interaction energy in this form by using
(N,) mentioned above, a subsidiary quantity 6, must be introduced into the
calculation ; this parameter takes the value either plus or minus unity according
as the orientation of the spin associated with Z, levels lies in a direction either
antiparallel or parallel to the spontaneous magnetization of the system under con-
sideration. Since 2S is equal to 2 N,0., the following type of expression will be
obtained.

f Ny, Nyooeees ) = —(JAL)(XN,0,)* (8)
Accordingly, (9f/0N,) in the expression of log W is expressed as follows;
0
o= = UL (N33, (9

from which it is clear that the last term (20f/0N,)»; in the left side of Eq. (7),
namely, the expression of log W, is easily shown to be twice the interaction
energy, namely, —2JS*/L. rience, log W is given by the following equation:
log W= 2.log {1+exp(—a—BE;—p5:;(JS/L)) }
+‘ aN+BE—-B-(2JS*/L). (10>
Based on the form of entropy klog W, the relations a=—¢/kT and S=1/kT are
obtained by utilizing the thermodynamic relation, T being the absolute temperature.

By putting the respective values of « and 8 into Eq. (6), the following equation
is established:

Ni/Z, = {1+exp(E,+0f/dN) — )BT .

This gives the probability for that each state belonging to Z, will be occupied by
an electron, the parameter ¢ corresponding to the Fermi energy.

As the total energy U of the system is expressed by E— (JS?)/L, according to
the above-mentioned expressions, the free energy F of the system, namely, U—-T0,
takes the following form:

F=(SIL) + ¢cN+ @, an
= kT2 (1+exp{(¢—E;+ (0:JS/L)/kT }]. a2

From the expression of free energy thus obtained the magnetic moment M of the
system will be given by

M = —-0F/0H. a3



372 Tokutaro HIRONE and SyShei MIYAHARA

III. Application to intrinsic semi-conductors

Now, these results would be applied to the case of an intrinsic semi-conductor.
Neglecting the band width, denote the energy and numbers of the levels of its
full band by E, and 2Lb,, respectivelly, and those of the empty band by E, and
Lb., respectivelly. It will be inferred that the exchange integral J between any
pair of electrons of the full band is exceedingly larger than that of the empty
band and that ferromagnetism originates from this band. Then under the action
of the external magnetic field H the following equation may be established for the
energy levels of the full band:

E;=E, + d,nH.
Here 2 is the Bohr magneton.

On the other hand, in the empty band it will be supposed that no change takes
place except that E; turns out to be E, and that the exchange integral of the
levels belonging to this band is remarkably small in comparison with that of the
full band. Then, the calculation of the summation > in the expression £ can
easily be operated, the result being given as follows:

2 =—RkTLb,log {1+exp {¢—E,—uH+ (JS/L)IET)}

—kTLb, log {1+exp {¢—E,+pH—-(LS/L)/RT)}

—kTLb,log {1+exp (¢ —E,—pH)/kT )}

—kTLb,log {1+exp (c—E,+uH)/ET} .
As S is the total spin quantum number, the total magnetic moment M of the
system will be expresed by

M= -2Su. (14

By substituting the expression (12) of £ into the free energy foumulas (11), (12)

together with (14) and calculating the intensity of magnetization by means of (13),
we obtain

M|(Lpb)=—1/{1+exp ( (El_C+/“H+%]bl'ﬂl/Lﬂbl)/kT>}

+1/{1+exp {(By—nH-¢ — 5 JbM/Lub)JET) )
+1/{1+exp {(E.—¢—nHD/kT }
~1/{1+exp {(B.—¢+uED/RT }. (15)

If the free energy is considered to be a function of M, the values of M given by
(15) will give the maximum and minimum points of the free energy. If the
expression (15) has several roots at a certain temperature, the value of M
corresponding to the absolute minimum of F will give the actual value of magne-
tization. Furthermore, it is necessary to determine the Fermi energy ¢ in the
formula before the calculation. From the thermodynamical relation
N=—-082/0Dy 1 p
we obtain
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N =2Lb,= Lb|(1+exp ((Ey+ H— ¢+ Jor (MILpb)/RT }]
+Lby/ (1+ €xp{ (B, — sH=C+ -5 Jb, (ML ))/RT'} ]
+Lb,/ (1+exp{(E,—pH—-[RT} ]
+Lb,/ 1 1+exp{Es+uH—-c)/kT }]. (16)

Therefore, by solving M and ¢ or M/Lub, and ¢, for conuenience’ sake, simul-
taneously from Eqs. (15) and (16), we get the spontaneous magnetization M as a
function of temperature.

Now, let us turn to the consideration of the state at the absolute zero before
calculating the change of spontaneous magnetization by means of the expressions
obtained. At the absolute zero, Lb,% electrons are excited from the full band to
the empty one and then the free energy F of the state which will have the total
spin quantum S, is expressed as follows:

F=U=Lb(E;,—E)Dn—(JS*/L)+2HSpu . an
If » is cconsidered to be fixed, the state of the minimum energy will correspond

to the maximum spin quantum number and consequently the following equation
will be obtained :

30 — 1

O

S = —% Lon. (18)

Tracing the values of F in the case of H=0 for =
with these expressions, Fig. 1 is obtained. As shown
in the figure, F changes with » in parabolic form

n=1 corresponds to the minimum. In other words,
in the case of (19), the spontaneous magnetization

and takes the minimum for #=0 § /4
when E,—E,> Jb/4, 19) ot /
and when E,—E, < Jb,/4 20) 3 | 1
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does not appear at the absolute zero, while in the
case of (20) the largest spontaneous magnetization i

appears. Again, in the case of (20) with the gradual

increace of the magnetic field up to H=(E,—E, -10 s
—(b,J/4))/u, the spontaneous magnetization appears ——n

abruptly. Curves in Fig. 1 are of the case of b,<b.. Fig. 1.

Curve I is formed when b,/ is equal to 3.6 (E£,—E;) and in this case the total
energy attains the minimum value at »=0, no spontaneous magnetization taking
place. Curve II is obtained in the case of b4,/ being equal to 44 (E,—E)). As
seen from the figure, #=1 corresponds to minimum energy and in this case ferro-
magnetism appears. Curve III is formed in the case of 4,/=4(E,—E,), in which
the values of energy for =0 and n#=1 are equal to each other. This value of
exchange is the lowest one for the occurrence of ferromagnetism. Curve IV shows
the case in which the magnetic field of the amount of 0.12x (E,—E,)/u is acting
on the case of the curve I. In this case ferromagnetism with the minimum energy
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appears at #z=1. For higher temperatures, the relation between the free energy
and the magnetic moment is determined by Eqgs. (16) and (11). As an example,
it is shown in Fig. 2 that in the case of Jb,=3(E,
—E)), the curves I, II, IIT and IV respectively re-
-055 present the free energies at T=0.35(FE,—E)/k,
T=023(E,—E)D/k, T=015(E,—E))/k and T=0 as
the function of the magnetic moment. The ordinate
065 shows the value of the free energy per mol in the
case of (E,—E;)=100%k. Curve IIl' is given for the
enlarged measure of the ordinate III. The arrows
in the figure mean the roots given by (16), and with
the rise of temperature, the magnetism undergoes a
gradual change corresponding to the displacement
of to the lowest value of free energy. The changes
Tl of magnetic moment with temperature are shown in
02 04 06 08 /0 Fig. 3, in which the numerals mean the ratios of
/.‘7/ bu the exchange integral multiplied by &, and the
Fig. 2. difference in the energies of the empty band and the
full band, namely, J/b,/(E,—E,). When (E.,—E)) is fixed, ferromagnetism does not
appear so long as /b, is small. In the case of Jb,=2.70(E.— E,), the curve 2.70 in
Fig. 3 is formed. In such a case spontaneous magnetization appears in the
neighborhood of 7'=0.56(F;—
E)D/k, but disappears again at a
certain lower temperature. If
Jb, is assumed to increase
gradually, the range in which
magnetism appears will con-
tinuously widen.

In the formula of the magnetic
moment, the exchange integral
J appears in multiplied form by
b,, the level number (per half
an atom) of the lower energy band. Therefore, when both (E,— E;) and &,/b, are
fixed and the value of /b, is given, the relation between M/Lub, and kT/(E,—E;)
is determined, which brings forth the relation between the magnetic moment and
temperature T. When Jb, is fixed and b, becomes small, the magnetic moment M
becomes small at a certain fixed temperature. Since M/Lub, becomes small when
J is fixed and b, alone diminishes, M becomes smaller than that when /b, is fixed.
If the ratio Jb,: (E.—E,) takes the value 3.3, a part of the spontaneous magneti-
zation will vanish at a certain temperature. This is because that an abrupt transi-
tion of the absolute minimum point of free energy occurs among several relative
minimum points. Haraldsen® discovered such a jump of magnetism in the case of

(2) H. Haraldsen, ZS. anorg. allgem. Chem. 234 (1937), 337.
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CrS (Fig. 4.

Fig. 5 shows the change of spontaneous magnetization caused by the action of
magnetic field, in which /b, is"equal to 2.9C(E.—E,). The numerals in the figure
indicate the strength of the magnetic field by the unit of »/(E.—E)).
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Summary

The ferromagnetism due to the collective electron model was discussed by

applying the Fermi-Dirac statistics to the orientation of electron spins. A formula
for the change of spontaneous magnetization due to temperature was given together

with the expressions for various thermodynamic quantities of the system. The
results were applied to the cases of the ferromagnetism of semiconductors. The

characteristic change of spontaneous magnetization of chromium sulphide was
reproduced by the theory.



