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Synopsis
In order to explicate the experimental results on the thermoelectric power of the
crystals of pure tellurium and those alloyed with antimony less than 5 per cent, the

thermoelectric power of the non-polar composite semiconductor in general has been derived
as follows,
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where ¢ is the height of the electrochemical potential above the valence band, 4E(T)
=4E(0)+ T is the width of forbidden band, 2, and m;, are effective masses of electrons
and holes, & is the ratio of electron and hole mobilities and % is the energy required to
extract the electron at the top of the valence band to rest outside of the crystal.
Numerical calculations carried out for tellurium crystals have shown that the measured
characteristics can well be accounted for throughout the temperature range being studied.
The quantitative discordance observed at higher temperatures has been explained by a
more or less elaborated theory in which a dual band structure which consists of two
overlapped energy bands is assumed for the conduction band, the same band scheme
being compatible with other electric properties of tellurium.

I. Introduction

By virtue of the recent progress of the experimental and theoretical investi-
gations on the electrical properties of silicon, germanium, selenium, tellurium and
so forth, the systematic knowledge on the non-polar substances has been greatly
developed. However, the generally recognized energy band scheme for these
semiconductors is not fully justified by all of the electrical properties, nay more,
certain experimental faects that are likely to suggest the roughness of this energy
band model have been found. The thermoelectric power, in spite of its important
nature, is one of the properties with which systematic investigations have not been
fully performed. Such an investigation may be of very interest in order to check
the appropriateness of the electronic energy band model now generally accepted
for a semiconductor. The explanation of the measured characteristics of thermo-
electric effect of tellurium crystals is carried out on the basis of the conduction
mechanism worked out from the analysis of the experimental data of the resistivity
and the Hall effect. '

* The 682nd report of the Research Institute for Iron, Steel and Other Metals.
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II. General expression of the Seebeck effect
of the non-polar semiconductor

The polarization wave inherent in the lattice vibration interferes essentially with
the behaviour of conduction electrons in the ionic crystal, while in the case of a
non-polar crystal it possesses no such a significant meaning, hence the interaction
between the electrons and the lattice vibration is relatively small in comparison
with the case of an ionic semiconductor. Therefore, the mean free path which is
defined for conduction carriers by the usual way may have the physical significance
and then we can carry out the calculation by solving the Boltzmann’s equation
written in terms of the mean free path integrals in the presence of the electric
field and the temperature gradient in the crystal. Moreover, being the number of
conducting carriers very scant as an essential feature of the semiconductor, the
calculation is usually simplified by adopting the classical statistics to the carriers
assemblage.

When an isotropic and homogeneous conductor having a single energy band
which contains conduction particles of effective mass m carrying an electric
current J under the coexistence of an electric field F and a temperature gradient
0T/0x in the x direction, the Boltzmann’s equation becomes as follows,®

kT 0 K, oT
F‘Teffjfﬁ T 2 Cor) - KjlT ox° (1
where ¢ is the electrochemical potential measured from the bottom of this eﬁergy

band, 7 is the energy of conduction particles and K’s are the following integrals
involving the mean free path /.

_ 16zm = g% ,
K,= 3 j;l(v)v o dr, (2)

and
1

1+ exp (%)

This equation devoid of generality is only applicable to the case of a single
band conductor, that is, as for semiconductors, it is available for an extreme
extrinsic semiconductor in which either the conduction band or the valence band
alone participates in the conduction in consequence of a fairly wide forbidden band
as well as a large density of either donors or acceptors. Generally the non-polar
semiconductor has a relatively small forbidden band width as compared with an
ionic semiconductor, its conduction should be considered to be due to both
electrons and holes, at least a part of which are generated in pairs by excitations
of electrons in the valence band to the conduction band over the forbidden band.
In the present calculation, we consider a non-polar crystal having a secondary
structure in both bands, namely either band consists of an overlapping of several
bands,  apexes of which are situated with small energy differences with each other.

fo=

(3

(1) R. H. Fowler, Statistical Mechanics, Cambridge, (1936), 411.
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In such a crystal, each of all bands in concern should be treated individually and
let us denote the energy of the extremity of ith band (the top for a valence band
or the bottom for a conduction band) by E;. It is measured with reference to the
vacuum just outside the crystal* as the zero of energy. Let the Fermi level of
the crystal similarly measured be ¢, the charge of a current carrier moving in the
ith band be ¢;, the effective mass be mz, the mean free path be /; and the current
responsible for ith band be J;, then Eq. (1) is extended as follows,
Ji RT 0 [/ ¢ K, oT
F=,Z{ e Ky el 6x<kT> " KyleT *07} , (4
where K;; is the mean free path integral represented by Eq. (2) in which s, [, ¢
are replaced by m,, [;, ¢; respectively. And ¢; and ¢ are related by
— €
B |e:]
When this semiconductor is connected with an ordinary metal to make a closed
circuit, keeping the two junction points at different temperatures T, and 7 (> T¢)

Ci (Ei—0). (5)

a thermoelectric current is set up in this % 7(5%)
circuit. If one point of the circuit is cut off ‘ A\

. . . . Semwconductor
as in Fig. 1, a thermoelectric force @ gives
rise to between the open ends A and B A B
which are kept at the same temperature, Metal,
then the magnitude of ® is found by inte- y
grating F along the circuit from A to B Posa[tye -
allowing no total current J to flow. lLe., Thermo -EMF ., 8

0= — §F( 1) dx, Fig. 1. Sign convention for the thermo-

. ) ) ] electric effect. The thermoelectro-
where x is the direction lying along the motive force ® under the tenperature

circuit, and the sign of ® is taken positive difference, 7- Ty, is defined as positive

. . when the thermoelectric current flows
vxthen' t.he thermoelectric current, if the from the hot to the cold junction in
circuit is closed, flows from the metal to

a semiconductor as shown in the
the semiconductor at the hot junction. If figure.

the medium is isotropic, the component currents /s have no cancelling component
in any direction, hence it follows that /;=0 from /=0. Then from Eq. (4)

6= ——§Fk=0dx
:_fﬁze;’]{” Z(_eiKu@ oT + ek, 0T e*K; OE; dx—[ 1

<], 6

T 6x T T ox ' |e] ox e

¢ being a single valued function of 7, the second term is zero. Therefore,

i S Pre 37 izKi aE‘L
@:‘\f;‘: Zei'l-"K”Z(—— : K;‘C + : ?l +e leill 5f>dTAl
i

N -~ in semiconductor
i

—[ ” } in metal «

A position whose distance from the crystal surface must be remote far enough for justifying
the defiance of the image force but be near compared with a macroscopic length.

*
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Since the first term is usually very large in comparison with the second term, the
latter can be ignored, i.e., the thermoelectric power of this circuit is approximately
given by the absolute thermoelectric power of the semiconductor,* thus the
following general expression is obtained.

ae _ 1 '_ eiK”,Cli eiKgi ?ith 8E
dT —Zeian‘ Z< *

T T . lesl 5T > in semiconductor . 7

In order to proceed with the calculation, let us make the following assumptions
that in each energy band (i) the assemblage of charge carriers obeys the classical
statistics, and (ii) the mean free path does not depend on the energy of carriers.**
The mean free path /; and the mean free path integral K,; are obtained as follows,
when the carrier density in the 7th band is denoted by #; per unit volume and
the carrier mobility by u;,®

. — . 1"2 .
l; de QrmkT) "y
4 In; / 1 8
_* 7 s—3/2 fo— s—1 [
I{sz 3 (2 m. )1 12 (kT) S |eil (kT) S! n;L; o,
namely,
K]i 1 nuul ]
K= 121 nigihT . ‘
The carrier density follows from the assumption (i),
302, 3/2 3/9
;= 2—(2—”"@ ( ) exp( kCT) , 10)
or : /
Ci _ 1oy 2Q@mmE)¥ 3 3 mi
T = log »n; —log = 9 log 5 m an

where m is the free electron mass. From Egs. (7), (9) and (11), we obtain the
next formulae.

e _ _k e ¢ 2 10E_
aTr Zleilniﬂi Z( el ET + le:| +— k o1 )ntﬂz ’ (a2
or
a8 _ k- i ( 2(2mmk)?
ar ~ Zmnlmz{ e \2t+log == o logT
3 1 0E;
B log ity log - > Ty 61‘} Miti - (13)

For instance, 1f copper is used as the metal the absolute thermoelectric power of copper

is 2.8 uV/degree at ice point, while the magnitude of thermoelectric power of a circuit

coupled with a semiconductor is usually observed to amount to several tens or hundreds
p1V/degree.

** This assumption is valid for the case of the mean free path /r, determined from the lattice
scattering when the most part of carriers distribute in a small energy range of the band,(2)
but is incorrect for /; due to the impurity scattering. For instance, as for the impurity
ion scattering, I; is proportional to the second power of the carrier energy.

(2) H. Frohlich, Elektronen Theorie der Metal'e, Berlin, (1936), 232.

(3) R.H. Fowler, Statistical Mechanics, Cambridge, (1936), 408.

*
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I1II. Thermoelectric power of the normal two bands semiconductor

We apply the general expression' above obtained to the more common semi-
conductor model which consists simply of two bands separated with a forbidden
band as shown in Fig. 2,* and rewrite 0

it in a more concrete form convenient R

for the comparison with the experi- §§

mental results. By denoting the N 3

electron charge by e, the width of S ////

forbidden band by 4E and the energy T £z

height from the top of valence band S X

to the Fermi level by ¢, we have §, NE(0) af Fermi
E,=E,+4E, X3 | iy Level
e=lel, e;=—lel, s _Acceptors
Ci=E-¢=-9¢, © | —aEp
o= —(Ey—)=¢—4E. 3 o

Further let us take into account the § ] ‘

temperature shift of the band struc- oK T —b

tPre, and assume approximately the Fig. 2. The energy band model of a g-type

linear dependence of 4E on tempera- composite semiconductor assuming approxi-

ture, : mate linear temperature variation of the
AE= AE(O) + BT (15) width of forbidden band.

By putting Egs. (14) and (15) into Eq. (13), the thermoelectric power of a com-
posite semiconductor is given by the following expression.

49 _k Ll 2 2mmk)¥? 3
dT " le| nu+neb {Om= ) (2+ log=2=2=—+ logT )
m,

m

—nh(log n, -—;’— log 1::%) +n,b (logne——g log )+ 4

~1.970% 10°—

J 3
e (O neb)(38.12+ - log T)

— n;,(log ny, — Zrlog%') + n.b (log n,— ; log%> +4, pV/deg (16)

k<__neb B 1 ax)

=H n,+ nb t k0T

N b B 1 0y
=1970x103( "2 B _ 1 0%
970x1 <n;,+ nb k k OT) #V/deg an

where

Ma=My, Ne=MWyy My= [y, fo= Mo, b=pt/pt, and x=—E,.
If the densities, the effective masses, the ratio of mobilities of electrons and holes
and the correction term 4 accrued from the temperature effect on the band

* Fig. 2 shows the case that acceptor impurity levels exist above the valence band, but the
ensuing results are equally applicable to either case where the donor levels or both levels
are present.
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structure are known, we can calculate the thermoelectric power of the semi-
conductor at any temperature from the above equation. 0%/0T in 4 is deduced
experimentally as the temperature coefficient of the photon energy corresponding
to the longer threshold wave-length in the outer photoelectric effect, which is
observed under necessary cares paid to the surface condition.®

In order to derive another expression of the same quantity, we set Eqgs. (14) and
(15) into Eq. (12),

de _fk {nh—neb 94 AE(T)) 4E(T)— 24 , lel( nb B 1 0% >’

dT ~ el Vs np\° " “2kT kT tntnb bk 0T
where
—2¢ 3
W= Nb 1-exp ( kT 2log f—~+10gb)
Mt b 1+exp( Al;?eTqu 21 glﬂ—"-l—logb)
4E-2¢ 3 m, 1
= Zlog e _ 21
tanh( 25T 4logmh 5 0gb>’
nb 1y JE-2¢ 3. m, 1
Py 2{1 tanh ( T 4%, logb) |
Therefore,
d0 _ R [(y, AEQ)N o AECT)=26 _3) om. 1
ar el {(2+ 2kT ) tanh kT 118, '2’1°gb>
_AE(TD)-2¢ B 1 0x)*
kT 2k k oT /. as)

This equation is equivalent to Eq. (16) and is used in the case where the densities
of electrons and holes are unknown. Thus we have arrived at the expression for
a composite semiconductor in which electrons and holes both participate in the
conduction. Next, let us simplify these formulae by applying them for some
particular cases.

Extrinsic semiconductors: We consider the case of the conduction due to
either electrons or holes alone, that is, the case of a crystal which contains
predominantly either donors or acceptors and is kept at such low temperatures
that the intrinsic excitation is hardly possible. For instance, taking a case where
acceptors are predominant, #.=0, therefore, by referring to Eq. (11), we may write,

de k 1 9

aT = |e] (2o 9T ) a9
The thermoelectric power for this case is more exactly derived directly from Eq.
(7) by taking solely the valence band into account,

(4) R.H. Fowler, E. A. Guggenheim, Statistical Thermodynamics, Cambridge, (1934), 484,
* In the case where the mobilities of electrons and holes have to do with the lattice vibra-

tion alone, their ratio becomes b= He <m ) 512 (5)
h

,u then we can write simply in Eq. (18),
h A

— 3 10g™e — Liggb= L 1gg e
7} logmh > logb= 5 logm
(5) F. Seitz, Phys. Rev. 73 (1948), 549.
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0 _k(1 K s 13
H“m(kr k1T v 51 . 20)

For the limiting case that the assumption (ii) holds, namely, the mean free path

does not depend upon the Kkinetic energy of holes, k—lT f((j becomes 2, then Eq. (20)
is reduced to Eq. (19). Although the mean free path in a crystal envisaged here
is generally subjected to both the lattice scattering and the impurity scattering
and the latter factor becomes more and more important as the temperature de-
creases, thus the assumption (ii) in consequence is rather inadequate for this case,
and exactly speaking, Eq. (20) should be used.*

Intrinsic semiconductors: In a crystal which contains no impurities, there are
no carriers other than the same number of electrons and holes which have been
generated through the direct excitation from the valence to the conduction band.
Actually, this condition applies to a very pure crystal at relatively high tempera-
tures. In this case 7, and #, far surpass the impurity level density NV; for instance,
a crystal which has shown more or less p-type extrinsic conduction at low tem-
peratures becomes intrinsic with temperature rise, namely, #,=#»,— N=#n;, in which
case the electrochemical potential becomes™*

_4E 3

¢ =54 kT log :Z: 2D

Thereby Eq. (18) becomes,

d@_k{1—b(2+AE(0)>_§ m, B 1 ax}

dT ~ Jed (155 kT ) T8 T o Tk T

(22)

IV. Numerical calculations on the tellurium crystals

In the preceding paper,” experiments were described in which the electric
properties of tellurium crystals showed various degrees of p-type semiconduction
by alloying different amounts of antimony as acceptor impurities, but the theoretical
interpretation of the observed thermoelectric behaviours has been postponed.
Now, we embark on the solution of this pending problem. Previously we deter-

mined the width of forbidden band under the influences of the thermal dilation and
vibration of the lattice as follows,®

* In this connection, the low temperature thermoelectric power of silicon specimens containing

known impurities was calculated by Z. Yamashita and M. Watanabe.(6) According to this
report, for instance, K,/kTK; of the silicon specimen containing 0.002%; boron takes a value
of about 2 at room temperature, but increases as the temperature falls, reaching about 3
at 100°K. In tellurium specimens, the calculation on the basis of the approximation
Ko/kTK;=2 is unlikely to give such a large difference as above, as touched later.
Cf., for instance, Frohlich, l.c. p. 81, Eq. (24); we can also get Eq. (21) by putting #,
=y in Eq. (26) referred to below.
(6) Z. Yamashita, M. Watanabe, Busseiron Kenky@ (in Japanese), No. 35 (1951), 40.
(7) T. Fukuroi, S. Tanuma, S. Tobisawa, Sci. Rep. RITU (A), 4 (1952), 283.
(8) T. Fukuroi, S. Tanuma, S. Tobisawa, Sci. Rep. RITU (A), 1 (1949), 373;

T. Fukuroi, Sci. Rep. RITU (A), 3 (1951), 175.

*%
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AE(T)=0.34+17x10"*T eV ,* 23
that is, in Eq. (15), 4E(0)=0.34¢eV, 3=1.7%x10"*eV/deg. Furthermore we estimated
the effective masses of electrons and holes from the estimated value of the
mobilities by means of the following relations deduced by Seitz'> in the case
where the mobility is tubject to the lattice scattering only.

32 _7"_!' —5/2 39 —7—/”1 —-5/2

mT™"= <ah ) , #T —_( o, ) s @H
where aj or «, is the quantities concerning the interaction between the phonons
of lattice vibration and an electron in the conduction band or a hole in the valence
band and these two factors would

EZ b not be strictly equal, but, as they
ii - are difficult to be determined, are
§[3 I put equal throughout the course of
S 2+ calculation. Effective masses of
‘g;(’) I electrons and holes obtained by this
yo9r am L procedure are plotted in Fig. 3.
L%‘;’; M Thes.e quantities m, and 2, m, in
Vosh ! particular, are apparently not con-
05 L

SRR R R Ny stant over the temperature range

under investigation, and even reverse
Fig. 3. The mean effective masses and the ratio their magnitude each other at 523°K.

of mobilities of electrons and holes, %, As for the origin of this variation
% and b(;%) in the intrinsic range. of effective masses, we shall put
L h

forward a possible explanation in
the last section, in which the conduction band of tellurium is not a single band
but consists of two overlapping bands whose bottoms are located with a slightly
different height from each other. As for the assumption a,=a, used above,
we cannot assign any theoretical basis for it. However, the theory of the varia-
tion of electronic energy bands due to the deformation of the crystal lattice
developed by Bardeen and Shockley(1® gives a result that the energy shifts of the
bottom of conduction band, |E.], and the top of valence band, |£;,|, due to the unit
dilation of the lattice are equal if a,=a, because of the relation |E,|*/|E.)*=au/a,
derived from Eq. (3.8) in the literature (10) and Eq. (24) of this paper. In the
case of silicon, if the mobilities of electrons and holes obtained by Pearson and
Bardeen(!l) and the values of effective masses m,_,/mzil—s—,
them to make the most consistent analysis of the experiment, are used, we can
evaluate that |E,,|/|E:,|=1.07/11.3=0.95 and a;/a,=0.90, so that «; and «, in silicon

my/m=1, assumed by

* S.Moss obtained from the experiment of photoconductivity the value of 8=2.0 x10-* eV/deg(9
which accords well with our estimation that 8=/, (lattice dilation) +/3,(lattice scattering)
in which 8, =+2.2x10-* and B,=-05%10"* eV/deg.

(9) S. Moss, Phys. Rev. 79 (1950), 1011.

(10) J. Bardeen, W. Shockley, Phys. Rev. 80 (1950), 72.

(11) G.L. Pearson, J. Bardeen, Phys. Rev. 75 (1949), 865.
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are nearly equal. If this result is allowed to be extended to our case, the as-

sumption a,=a, would give rise to no serious error and it leads to oL, = - OE,

. o OE,_0OE, oT oT
from |E,,| = |E;.|. Therefore, considering that '57_8*174’3’ Eq. (17), the correction

term of the thermoelectric power, becomes

_ __1_ ny— mb
4= 2lel 1+ nb B 2%
In this case, the quantity 0x/07 which is difficult to be evaluated has been
eliminated.

The carrier densities are obtained from Eq. (10),
3/2 —

h e kT , (26)
_2Q@umk 7Y% (¢~ dE
ST exe Sor ).

The electron density excited to the acceptor levels which must be equal to #,—#,
is given as follows,
N

@0
1+ exp (A%‘f(ﬁ) ’

where N is the effective density of acceptor levels and 4E, is the excitation
energy from the top of the valence band. Therefore the electrochemical potential
¢ is determined from the next equation, by specifying 4E, and N for a semi-
conductor provided the energy band structure is definitely known.

Np— N =

P 561/
|_|{—2Bottom of
conduction
2 | band
T 04
N
N /'/
N 0343
R
& 03
LY
g 02 Compwtcu pure (Eigl—, I
3 |5 Y i
g_ w7 \6""‘02, 6.A, e // / J
o W o / 3 / g
Y v / 10 510 0=
L= —
g — o lop of
0 0 20 300 400 300 60K ente
—T7 pand

Fig. 4. The calculated values of the electrochemical potential, ¢(T), of tellurium
crystals containing vatrious concentrations, atomic per cent C, of acceptor levels
having approximately null excitation energy, i.e. 4E,=0. The width of
forbidden band is taken as JE(T)=0.34+19%x10"*T eV and the magnitudes
of effective masses are taken as shown in Fig. 3.
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where

—AE —AE+AER

m. \32 —5— m. 32—
( ] ) e k1 y'; + {( e ) e ki
m m
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+52'13 (2nka)‘3/2}y2 - <%>3,2y

(28)

$
kT

In the case of antimony-doped tellurium, we found in the previous paper® that

——= Carrier concentration

m'l
/
\Jd
.
N c
Vi \ &
\\
~
— 0'2‘\\ R
M X0 ]
10

\\‘\ /07
1 \\\

A
/0/‘ [V

i
LY 0*

724

o7 09 /1 Lxw7*

T

Fig. 5. The calculated carrier concen-

trations as a function of temperature
with respect to various acceptor con-
centrations. The parameter C means
the acceptor concentration in atomic
per cent. The full and the dashed
lines represent the concentrations of
electrons and holes, #, and #,,respec-
tively. As to an absolutely pure
crystal viz. C=0, curves of n, and #n,
coalesce to a line. The chain line
borders the degeneracy temperature,
below this line the approximation of
classical statistics is applicable.

T, h? ( 3 )2/372h2/3= 4.9% 10-11(%)—1%213 .

T

= 8m;.k

4F; is too small to evaluate -from the
observed temperature dependence of the
Hall coefficient above liquid air tempera-
ture, so it is allowed to accept it as zero
in the present calculation unless one is
concerned well below the liquid air tem-
perature. And N is set equal to 2.97 x 10**
x107*C where 2.97x10% is the number
of tellurium atoms in a unit volume of the
crystal and C is the atomic per cent of the
effective acceptor concentration. Thus, in
Eq. (28), further by making use of the value
4FE in Eq.(23), and of ., m, values in Fig.3
for the range above room temperature
and of those values at room temperature
for the lower temperature range as they
seem to be almost constant at low tem-
peratures, we can evaluate numerically ¢
as a function of temperatures taking the
impurity concentration C as a parameter
and the results are plotted in Fig. 4.
Furthermore, #. and #, are calculated by
Eq. (26) using the ¢ values of Fig. 4 and
shown in Fig. 5 in terms of the same
parameter C. The chain line in Fig. 5
denotes the degeneracy temperature T, of
tellurium crystal pertaining to holes calcu-
lated from the next equation using the
foregoing value of #e,/m.

29

Fig. 5 indicates that the classical statistics holds true for the carriers assemblage,
provided the impurity concentration C< 0.05%. As for (= pu/uy), the values of
i, and g, are obtained by analysing the data in intrinsic range or those above
room temperature, so it is justifiable only when the effect of lattice scattering is
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preponderant to that of impurity scattering, and it is not legitimate to use this
value of b towards the tellurium crystals containing an appreciable amount of
antimony. On the other hand, provided that the impurity scattering overpowers
the lattice scattering, 200" ——
the extrinsic conduction 700},
prevails and the general o0
expression for the ther-
moelectric power, Eq.
(16), is superseded by
Eq. (19) which does not
involve 4.  Then the
value of b is less im-

T T T T T T T T T T

SN0+

Thermoclectrc  power 49T
N
&
—--C

0
portant for the nearly
3 . . . _/00
extrinsic condition, so e pure A€ |
=200+ e} 5
that the value referred i ; :
=300 ! |
to above may be used Y R R R WG K
without appreciable — T
error irrespective of the Fig. 6. The calculated characteristics of thermoelectric power
. . . versus temperature. C desjgnates the acceptor concentration
impurity  concentration in atomic per cent. The dashed parts show the uncertain
C. Thus having been portions due to the approximation of 4E,=0. The dotted

curve A shows the curve for 4E,=0.001 eV neglecting the

e s e s . d@.——,k,_ _¢_._ﬁ>
intrinsic excitation, that is, AT~ el <2+ YT ~ 25 )

known all characterizing
quantities, #., #n., m,, M.,

B and b, it is possible to ¢=% +%log N where v h:Z—(z‘zzrzlqﬁk—T)i/Z and N is
calculate the thermo- the acceptor density.

electric power as a it ,

function of temperatures so0— ‘ T —
corresponding to various S5l se s f/( ;t\/,—\\w ‘ |
acceptor concentrations L s it * L

by means of Egs. (16)
and (25). The result of
numerical calculations is
shown in Fig. 6. The

:

L\
3
;;f/
e

P n g
7 j/, ot © > e
y) i 7

i
Vi

= Thermoelectric  POWEr,

|
i

0 1

dashed low temperature ,M! l N \&;”// i
“\-O/V

parts of the curves o . \\u/l | J

20 700 20 30 00 500 00

designate the uncertain

portions resulted from Fig. 7. The thermoelectric power of antimony-doped tellurium
the approximate treat- specimens against copper measured at various temperatures.

Temperature 1 A

ment 4£;,=0, and if any finite value is assigned to 4E, the thermoelectric power

at the lowest temperature range should indicate an increasing tendency with
decreasing temperature as expected from Eq. (19). For instance, in an extrinsic

3/2
case of 4£,=0.001 eV, %—,: g and ¢= %2—"' + %’I»‘log %’}— where v,= &m;:—,"kr)— and

N is the acceptor density, Eq. (19) gives the dotted curve A and every dashed
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Fig. 8. Variation of thermoelectric power as a function of the
density of acceptor levels as derived from Fig. 6.
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Fig. 9. The measured thermoelectric power plotted against the
hole density at room temperature, which is approximately
equal to the acceptor density.

V. Comparison with experiments

parts referred to above
should tend to transfer
at very low tempera-
tures to some curves
similar to the dotted
curve A. FEut the
basic assumption of
the classical statistics
is no longer valid in
such lowest tempera-
ture range, hence some
part of the above dis-
cussion would become
inadequate. Most of
this range, however,
is lower than that
under examination
here. In Fig. 8, the
curves of  thermo-
electric powers versus
acceptor concentration,
taking temperature as
parameter, are re-
plotted from Fig. 6 in
order to get facility
for the comparison
with the experimental
results.

In the previous paper,” we described the experiment on the electrical properties
of pure tellurium crystals and tellurium crystals alloyed with antimony to various
concentrations. From this, the part related to thermoelectric powers is referred
to again in Table 1. The first and second columns show the number of specimens
and the antimony concentration respectively, and the third to sixth columns
indicate the density of holes obtained from the Hall effect data at room and liquid
air temperatures; blanks in the table correspond to the composite or intrinsic
cases where the hole density is incapable of being determined in terms of Hall
coefficient alone. As seen in this table, there is no large difference between the
hole density at room temperature and at liquid air temperature of the same
specimen, which fact indicates that almost all of the acceptor levels are ionized,
thus yielding holes even at liquid air temperature because of the smallness of the
excitation energy, 4E,, in all specimens. Consequently the hole concentration ta
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room temperature is almost equivalent to the effective acceptor concentration and
it is permissible to use the former in lieu of the latter. On the other hand, the
added antimony concentration and the effective acceptor concentration are generally
very different from each other owing to the fact that only a small fraction of the
added antimony atoms seem to cause the formation of effective acceptor centres.

Table 1.
added l hole concentration
specimen ' antimony
| concen- at ca 15°C at liq. nitrogen temp. g* in degree
number tration |- -y R
| (atomic%) | C atomic%! n,/cm? C atomic%; np/cm?
1 0 C(77%10°%) | (23x10") | 6.4%10-° 1.9x 101 6
2 0 , 15x10-% | 4.4x10% 20
3 0.0018 ! | 3.4x10-5 1.0 x 1016 poly cryst.
4 0.0045 | 5.0x10-* 15%x107 © 3.2x10-¢ | 9.6x10 45
5 0.0105 | 29x10-* 8.5 10 2.4%x10-4 7.1x10 0
6 0.0157 | 4.8%x10-* 1.4 %107 3.9% 104 1.2x10Y7 poly cryst.
7 0.0439 | 4.2x10-3 1.2x 10 | — f — 15
8 0.0943 . 5.9x10-3 1.7%x10® | 56x10-3 1.6x10% 5
9 0454 ' 19%10-% | 57x10¥® | 19x10-2 5.8 %108 6 <10
10 1.048 3.6x10-2 1.1x10Y° ! 3.8x10-2 1.1x 10 70
11 5.227 76x10°2 | 23x10" | 91x10°2 = 2.7x10Y 0’ =80
12%* 0.0079 3.2x10-3 | 9.5x10Y | 3.2%10-3 | 95X 10%7 35

* @ is the angle between the principal axis of single crystal and the longitudinal axis of
the specimen. @’ is the angle of preferred orientation found in a polycrystalline specimen
which consists of crystallites having nearly parallel axes.

** No. 12 contains 18.3 atomic per cent selenium.

So that the impurity concentration involved in the calculation of the previous
section is capable of being compared adequently with the said hole concentration
at room temperature.

The thermoelectric power against copper of the twelve kinds of specimens
‘measured over the range from liquid nitrogen to about 306°C is shown in Fig. 7,
in deference to the sign convention depicted in Fig. 1. This is to be compared
with the calculated result in Fig. 6, in which, strictly speaking, the absolute
thermoelectric power of copper involved in the observed result in Fig. 7 should
be taken into account, though because of the negligible smallness of the said power
we can leave it out of consideration here. Inasmuch as the estimated acceptor
concentration adopted in Fig. 7 is not in agreement with the impurity concentration
denoted by C in Fig. 6, which fact entails the inconvenience in direct comparison
of these figures, the former is replotted in Fig. 9 in which thermoelectric power
is depicted as a function of acceptor concentration taking temperatures as a para-
meter. On comparing Figs. 8 and 9, a sufficient agreement is recognized between
the theoretical and the experimental characteristics, except for some partial
discrepancies to be discussed below. .

The specimen No. 12 contains about 18 per cent selenium and 0.008 per cent
antimony. As in Figs. 7 and 9, the thermoelectric power of this spécimen is
somewhat smaller at high temperatures than that expected. The cause of this
difference may probably be due to the difference of the quantity &, the ratio of
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electron to hole mobility, in the temperature range in question because of the
possible difference of lattice vibration due to the selenium addition.

Now we reflect again upon the approximations used in the present calculation.
The assumptions which become objectionable in general when the temperature is
lowered are that (i) the application of classical statistics, (ii) the scattering
process which is responsible for impurity atoms or ions is ignored in calculating
the mean free path integrals, and (iii) the excitation energy 4E,=0. Among them,
the assumption (ii) may be the most dubious one for highly impure specimens at
low temperature range. However, since the observed and the calculated results

for such specimens are in substantial agreement with each other, the result obtained

by putting 2 instead of % % in Eq. (20), i.e. the calculation pursuant to the
1

assumption (ii) is unlikely to bring forth serious error in the present case. The
experiment at extremely low temperatures is considered to be of very interest in
view of the expectance that it may provide the more accurate data for discussing
these assumptions. The Hall coefficient of an intrinsic semiconductor is given by
3 1-b6 )
__om 3)
An 8leln 1+b° @9

while the expression of thermoelectric power can be reduced to the form

dae k 4dE)\ 1-6 3 }

i + = it T

aT = {2+ %) 155 1080}, Gb

by substituting %:% and b lf;(—:;—")—slz in Eq. (22). When the value of & takes
h

unity Egs. (30) and (31) become zero simultaneously. This notwithstanding, the
observed characteristic of the thermoelectric power of specimen No. 1 crosses over
the abscissa axis at 180°C instead of 250°C at which the Hall effect of the same
specimen becomes zero.® Furthermore, the magnitude of the thermoelectric power
in the higher temperature range of this reversal are fairly larger than the calcu-
lated ones and this tendency is also found in the other impure specimens. These
facts seem to imply that Eqs. (30) as well as (31) are not so accurate formulae
that are capable of representing well such details.

Apropos of these results, we must recollect other assumptions hitherto made in
order to deduce the above formulae, that is to say, (iv) the material is isotropic
and homogeneous, and (v) the simple composite semiconductor energy band model,
consisting of single conduction and valence bands together with an impurity level
midway between them, represents the electronic structure of a tellurium crystal.
As these assumptions are generally linked to each other and as the tellurium
crystal is remarkably anisotropic, in the next section let us tentatively make

allowance for the anisotropy effect by assigning a dual bands structure to the
conduction band.

V1. Thermoelectric power of an intrinsic semiconductor to
which the dual structure of conduction band is assumed

The quantitative disagreement between the theory and the experiment is
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recognized in the higher intrinsic range. Now, let us consider a crystal free from
impurity and assume a dual conduction band scheme as the electronic energy
structure of tellurium which consists of two overlapping conduction bands whose
bottoms are somewhat shifted each other. For simplicity’s sake, let us disregard
all temperature effect to the band structure. And denote the energy levels of the
top of one valence band and the bottoms of two

conduction bands by E), E, and E; as shown in E / / 7
Fig. 10. Next, we assume that the current carriers §§ // £
in the valence band, in the lower conduction band S E’
and in the upper conduction band have fixed energy- ‘
independent effective masses m,, w2, and m; re- o
spectively. Hereupon let us presume the next §§ Fermi Level _';
relation with regard to the magnitude of m’s as §§ l o, &,
the basis of the following argument, l

My < My < M3 — C, 32 &
where ¢ is a suitable positive constant, then the §§
mobilities x;, u#, and p¢; become, §§

s> g > p 33
Let the effective mass of electrons excited to the
conduction band be 2, when the dual conduction

Fig. 10. The energy band model
of the dual conduction band
without regarding the impurity
levels and the temperature effect

band structure is reduced back again to the original towards the band edges.

single conduction band model. Then m, may be an average mass of 72, and mz;
calculated by taking into account the excited electron densities #, and #,;, hence it
is not a constant but varies with temperatures. At low temperatures, #2, is smaller
than 2, or to the same thing smaller than 2, by Eq. (32), because the most part of
conduction electrons belong to the lower conduction band due to the smallness of
kT, and m,, the mean effective mass of all conduction electrons, is nearly equal to
m,; but with the rise of temperature, electrons excited up to the upper conduction

band will be increased, accordingly m, increases with temperature and approaches
to a constant value at sufficiently high temperatures in case that E; — E, < kT.

Then if ¢ in Eq. (32) is not too small, the value of m, must exceed m, at an
intermediate temperature. In this way, qualitative as the explanation may be, the
temperature dependent abnormal behaviour of 2, in Fig. 3 can be interpreted.

Furthermore the thermoelectric power rewritten in accordance with the dual con-
duction band model is obtained as follows from Eq. (12) using the relation #;=#n,+ s,

ae k 7, Qg — p2) + 13ty — p22) E,+E;—2E,
a0 _ k_ 5
dT ~ el { PaCatn+ ) + 10 (s + 13) (2+ kT )+ } , 3D
(ny+ng) pae + (Mot — M3 pt3) Eé‘:;@]“
5= 2 . 1 (35)
1, Cety + ) + 03(ur + 123 kT -
And 6 = 711‘ (Ev+E;—2E) +2, (36)
kT m13/2
e =" Tlog : T ———— 3D
2 32 exp(Ea— L 312 exp B2 Es
2 exp((Fypt )+ i expl Spr)
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If m,, m, and m; are of the same order of magnitude and E;—FE,<2kT, ¢ in Eq.
(34) is small.

While the Hall effect expression for this model is calculated as described below.
When the magnetic field A is applied, along the z direction, perpendicularly to the
specimen currentj: which is derived by the longitudinal electric field F,, the trans-
verse electric field F, is set up in the ¥ direction under the condition of no transverse

current. The Boltzmanns equation yields the next relationship‘2’ under the con-

ditions that J, = Z J,i = 0, the isothermal state gT g—z =0, and the magnitude of

H is not very large

= Ofoi | 12 [ 2p\V2)
i51Jo a; LF’ +HFm(,f) }dv—o- (38)

If the assumptions (i) and (ii) descrlbed in Section II, namely the classical as-
semblage of carriers and the energy independent mean free path in each band, are
also applied, the above equation gives the following expression for the isothermal
Hall coefficient Ag, denoting the conductivity in the magnetic field by ¢ (A,

— Ffl — Fﬁ/
An= P = HF. @9
o(HD = 6(0) = fi nilesl pe s (40)

o= 3n ni/h — My pts" — M3 %
8lel  (Muptr+Mapn+ Mypts)?

3 me(ul—w®) Fus(u®— ) D

- 8|e' {nz(,ul“l‘ﬂz)'*‘”s(ﬂl +/l3)}
The ratio of electron densities in the conduction bands, using the classical statistics
as well, is deduced from Eq. (10),

M _ ( ma )3/2exp (EZkTEg ‘) (42)

7y e

Now, let us denote the sign reversal temperatures of the thermoelectric power and
the Hall coefficient by 7(d®/dT) and T(Ag)vrespectively, the next relation follows
from Eqs. (34), (41) and (42),

( Z: )T(d@/JT}/( Zi >T(AH‘)= €Xp {Ez;e-&( T(dé&iﬂ T(}éﬂ,j) }

Y P N Vbl A T 'Y 43
) /13_,UJ/ u_/«hz it ps ) . ( )

From Eq. (32), the right-hand side of Eq. (43) is less than unity. Namely,
7@o/dT) < T(Am). (44

As described above, the reversal temperatures are observed as follows,
T(dO/dT)=180C=453’K, T(Ag)=250C=523K ,

therefore the suggested energy band model also lends itself to account qualitatively

for the temperature disagreement in question.
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