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. Synopsis

The increase in electrical resistance of metals due to cold-work was discussed taking
into account the perturbing potential due to the edge dislocation caused by the said
mechanical treatment." The method of calculating the electric conductivity was based on

* Peterson and Nordheim’s assumption for the perturbing potential. An estimation of
thermoelectric pbwer due to cold-work was made from the same point of view. A criticism
was given for the theories by Koehler and Machenzie-Sondheimer. The 'results obtained
showed somewhat smaller value than the results of the above-mentioned authors.

"I Introduction

It has been found experimentally that, when a metal undergoes a severe
cold-work, its electrical resistance and thermo-electric power will change several
per cent.) According to a recent experiment by Rutter and Reekie®) in copper
and alumiunum, these increments of resistance Ap consist of two parts, namely,
temperature independency Ap, (residuél resistance), and temperature dependency
Apr.

Ap =ADpy+ Apr (1)

 Let us consider only the part Ap,. The causes of this residual resistance may
‘be considered to be due to the formation of disloctions, lattice defects and cracks
~and cﬁanges in grain boundaries in the metals by cold-work. This problem was
treated by Koehler® and Mackenzie and Sondheimer® by assuming that the
important change during cold-work would be caused by the formation of a large
number of edge dislocations. The method of treatment by Mackenzie and Sond-

* The 645th report of the Research Institufe for Iron, Steel and Other Metals.
(1)  E. Schmid and W. Boas, ‘‘Kristallplastizitit” (Verlag Julius Springer p. 214.
(2) J. W. Rutter and J. Reekie, Phys. Rev. 78 (1950), 70.

{8) " J. S. Koehler, Phys. Rev. 75 (1949) 106.

(4) J. K. Mackenzie and E. H. Sondheimer, Phys. Rev. 77 (1950) 264.
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heimer was based on the assumption of rigid sphere ion, but they did not take into
account the field due to the change in the charge distribution of valence electron,
which would neutralize the potential field of each lattice ion in distorted crystal,
and hence, it may be expected that the actual change of electrical resistance dne
to the introduction of dislocation will actually become several tenth smallerin
value, than the Mackenzie and Sondheimer’sresult. Recently Landauer® estimated
this value by using a method which took into account the conduction band structure.

Here, using the Peterson and Nordheim’s assumption which takes into account®
the change in distribution of valence electron, we could obtain fherqetically the
increments of resistance and thermo-electric power, the results being shown in
the following pages. Since the increment of resistance due to the edge dislocation
introduced by cold-working depends on the number of dislocations per unit area
N, the numerical result will be controlled by the estimated values of N.

II. Evaluation of Apy

, The metallic crystal lattice will undergo a kind of distortion when it suffers
cold-working. For the calculation of electric conductivity of the distorted matallic
crystal, the same model as those of reference (3)—(5) is used. If the wave function
of conduction electron with wave vector k in distorted crystal is denoted by Wg (r)
then it satisfies the following Schrédinger’s equation : 4

- —2% VWEe(r) +(V, + AV + AV,,)'\Ifk(r); EpVr(r) (2)

where 7, is the periodic potential in undistorted crystal and AV =AV;+AV,is the
perturbing potential in distorted crystal. AV, is the perturbing potential due to
the displacement of lattice ion from its equilibrium position, and AV, is that due
to the change in change density of conduction electron, which must be obtained
- in self-consistent way with Wg (r).D ‘ i
Now, according to the consideration of Peterson and Nordheim, in metallic
case, the charge density of condection electron in each unit cell of distorted crystal
is so distributed as to cancel the charge of one posiﬁve ion, and the volume of the
cell changes by Q=Q,(1+div ) due to the displacement u of lattice point, so
it is assumed that this charge density will be representéd approximately by p=
Po(1+div u)-, where Q, and p, are the Volume of unit cell and the mean charge
density per unit volume in undistorted crystal, respectively. If the wave function
of conduction electron in distorted crystal is denoted by Ua exp (ikr), then p is
proportional to | Ua|? : consequently, Ua is given approximately by B

5 R. La.ndauér, Phys. Rev. 82 (1951) 520.
-(6) E. L. Peterson and L. W. Nordheim, Phys. Rev. 51 (1937) 335.
(7 ]. Bardeen, Phys Rev. 52 (1937) 688.
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Uaoo (1 + divu) P21 — —Ldivu, N
Multiplying the both side of wave’equation above mentioned by Wy*(r), integrating
over the whole volume of crystal and using the orthogonahty of Wk, the matirix

element is obtamed as follows :

(R1AV k) = — L[ gt gitr v [p1/2 ibr) d. (4)

Hereafter, quite the same treatment as Mackenzie and Sondheimer is made :
the conductivity in each direction is given by the following integral forms :

kK

3NhenA’r Sﬂ o Szi dp SZ‘ Adp’'Ks T + kg ¥ sin @ cos P,

SmP VI
3NFenAPs (= . (2 kR, 5
a'y—a'o+—8—7—t2—7—;%/—2ﬁ§ o7 ap (" ay'K, (e sin 0 sin $, (5)

os = o0 = ne’r/m,

o, =0+

where ., &, n, 7, V and ‘A are the mass of electron, the charge of electron, the number
of electrons per unit volume, the relaxation time, the total crystal volume and the
quantities which is determined by elastic properties, respectively, and K is used
instead of £’ — k. The coordinates # and ¢ are the polar and azimuth angle of wave
vector k. Based on eq. (5) and assuming Matthiessen’s rule, the mean increment
of resistance for all crystallographic direction is given by

' N#\2 2—»\? ' .
Ap, = BE, VB (',T_Jf' , (6)

where A, » and %, are the unit slip distance, reciprocal of Poisson’s ratio and the
absolute value of wave vector on the Fermi-surface, respectively. )

For copper, the relative change of resistance at room temperature is obtained
by putting proper numerical values in parameters of eq. (6). The result is given by

Apo/p = 0.5 x 10-5N. ’ (7)

Since the increment of resistance due.to edge dislocation depehds upon the number
of dislocations per unit area, N, the numerical result is governed by the estimated
valueof N. Based on the estimation of this unmber in severely cold-worked material
by Koehler, let N be 2.9x 10" per cm? then the expected change of resistance
becomes 0.014%,, which is exceedingly small as compared with an experimental
result by Rutter and Reckie. Now, the accuracy of the value of N estimated by

Koehler on the energy stored during the work-hardening is somewhat questionable,
'~ as the method of estimation was based on the elastic continuum theory. If the
result of present theory is correct, one must introduce as a value of N much larger
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value than that previously given. - : '

On the other hand, if the value of N estimated by Koehler is correct, the induced
dislocation is not responsible for the changeé of resistance due to the cold work,:
and the cause may be reduced to the change in grain boundary or origination of
other kinds of lattice imperfections and so forth during the cold-working. Using
the value obtained by the elastic theory, we can see that eq. (7) shows only one eighth
of the value of Mackenzie and Sondheimer. The theoretical and experimental
results are summarized in Table I and Table II.

Table I. Theoretical results of increment of resistance in cold- worked
copper, Apy/p, at temperature 20°C.

Koehler Mggﬁg?l?iifet?d Landauer ‘ Present method
Apy/ 2.72x10-14N 4%x10-15N 5% 10-14N 0.5x10-15N
Po/ P 0.79%) . (0.116%) (1.459%,) (0.014%,)

Table II. Experimental results of increrent of resistance in cold-worked metals
and the change of thermo-electric power at room temperature

Increment of resistance (Apo/ p) - Thermo-electric power (As/s)
- Schmid and Boasf!) Rutter and Reekie(?) . ;

(severely cold-worked) | . (50% reduction) Borelius and Thiele*
Flu : 2% Cu: Apy=0.49, Cu: V +1.2% 1.69%,
AG : 39, Apr=0.99 '
Ni 8% Au: +1.49
Mo : 189, Al:  A¢py=0.29, -
W - 509, Apr=0.59, Ag: +8%.

* G. Boreluis, Ann. d. Physik, 60 381 (1919)
J. Thiele, Ann. d. Physik 72 549 (1925).

. It is also to be remarked here that the adoptéd perturbing potential was based
upon the elastic continuum theory and will not reproduce the correct fovrn'l of poten-
tial in the vicinity of the dislocation centre. The adopted potential overestimates
the diviation from periodic potential and hence, the change of resistance will become
sl1ght1y less than that given by eq. (6).

~ Itis also remarked;here that the screw dislocation is of no importance in the
change of resistance by this theory, because the displacement around the screw
dislocation is given by® #:=0, 4y=0 and u,=(b/27) tan-'(y/x), where b is the
z-component of the slip vector. Hence, in this case, the relation div #=0 holds,
and consequently no volume change will occurs : then the change of resistance will
not be caused by the dislocation of this type.

s

I1I. Thermo-electric power

{8) W.T. Read and W. Schockey,:Phys Rev. 78 275, Appendix D (1950).



458 ' 'Tokutaro HIRONE and Kengo ADACHI

With the same model as in the previous section, we can formulate the change
of thermo-electric power produced by cold-work for the case in which the temperature
. gradient lies along the x-direction. , '
Thermo-electric power is given by Mott as follows: 9

(i=xyands), (8)

S;=’ w AT o 1og 73(E) |

3 E=¢

where % is Boltzmann constant. Assuming the Matthiessen’s rule (p;=po+Ap;),
.the conductivities in each direction is given by

0i(E) = a0(E) = [av (E)F/ai' (E), oz = oy | (9)

Since pi>Ap;, that is 00<ay/, it turns out to be

S=S.+ A kj[ (Z‘j((%), ]E_

where S, is the thermo-electric power in a metal with no lattice defect. According
to Mott’s treatment, the form oE)=CxE* is assumed to hold in the vicinity of '
Fermi energy. Hence, the real conductivity o(¢) is expressed by oo(¢)=Cx{*

| (¢ is Fermi energy and C is a constant). From these relations, we obtain the change
of thermo-electric power as follows : |

=G _ S, = kT (% Ap; _ Dpi[ 2 . ‘
ASi=S, - Si = T 7L { 2 Lo 2o (®)]_ } (16)
Since p>Ap;, the second term\wili be negligibly small compared with the first
term, and then we will obtain the relation '

ASi/So = Apilpe. - (17)

It is'expected from the present theory that the relative change in absolute thermo-
electric power due to cold-work is equal to the relative change in electric resistance.
As the Table IT shows, the relative change in thermo-electric power in copper does
not coincide exactly with that in electric resistance. These two data were, however,
referred to different samples by different authors. A neéw measurement of both
quantities in respect to the same sample is desirable from the present point of view.

¢+ (9) N.F. Mott and H, Jones “The Theory of the Properties of Metals and Alloys” (Oxford
University Press, New York, (1936) p. 310.



