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Geometry of Gears* - -

Kazuhiko MAEDA
The Researc_h Institute for Scientific Measurements

(Received March 31, 1951)

Chapter I. Theory of Spur Gears

1. In order to deal with tooth profiles from the general point of view, we shail
use complex numbers and dual complex numbers and solve problems by the method
of the natural geometry. The courses are similar for plane, spherical and spacial
cases. - : '

- 2. Analytic representation of plane curves . :

We shall fix an orthogonal frame O-xy of righthand system. Let (M) be an
oriented plane curve, A be a fixed point on (M), s be the arc length ‘measured from
‘A to a movable point M on (M) and let x(s); y(s) be coordinates of the point M.
If we put ' ‘

g=z+iy (P=-1, Yy, oo

K>0

.the_n the equation of the
curve (M) can be represent-
ed as follows:

z2=2(0) .

Let us denote the curvature b
of the oriented curve (M) by O |
«. It may be £ =0 (cf. Fig.1). = : Fig. 1.
We can easily verify that the following relation holds good: °
2 = ix2/ ' (z’ =% . | @D

* The author, Kazuhiko Maeda, Doctor of Science, was a mathematician, who had made
a special study of geometry with respect to gears until he died in the spring of 1948
at the age of 38. During the Second World War, also in Japan there were many studies
done on engineering by mathematicians. Dr. Maeda was one of them, who formulated
a plain but systema&ically beautiful theory on the meéshing of gears by means of natural
geometry. ’

In Chapter I, he dealt with the meshing of the spur gears in general, in ChapterII,
with the meshing of the bevel gears in general, and in Chapter III, with the meshing
of the skew gears toothed with skew ruled surfaces by utilizing Study’s coordinate of
a straight line. . .

In translating his thesis into English, we owe much to Dr. Shigeo Sasaki, professor
at the Department of Science, the T6hoku University. In his mimeographed script, we
found what seemed to be clear errors, which we corrected after consulting with Dr.
Kaneo Yamada, professor at the Department of Technology, the Niigata University
and with a few others. :

. ’ Tagaichi Matsuyama
The Research Institute for
Scientific Measurements,
o " Toéhoku University
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When « = k(s) is given, an oriented curve whose curvature is the given function
x(s) is determined uniquely except its location. If we reflect a curvew ith respect
to a straight line, then the curvature of the image differs only in sign from that of
the original curve. If we change the orientation of the curve, the curvature changes
in the same manner. ‘ '

3. Moving franies and relative coordinates
Let ¢ be a given point.'If we put.

c=z+2'Z (z' dz ) | G.D

ds

then Z is an in variant for any
displacement of the curve (M)

and the point ¢ as a whole.

We shall call Z the relative 9’
_coordinate of the point ¢
- with respect to the point z

on the curve (M).
"~ Let MT be the oriented
tangent to (M) at z and MN
be the oriented normal such — : ' — 1
that MT and M N make a O -
righthand system.  The Fig. 2.
frame M-TN is called the moving frame at a point z of (M). Z is the coordmate
of the point ¢ with respect to the moving frame at z.

4. Adjoint curve and the condition of immovability of a point
If the relative coordinate Z is given as a function of s, ¢ describes a curve generally.
We shall call the latter curve an adjoint curve of the original curve (M). Differen-
tiating . (3.1), we obtain
L 2@+ inZ+ D @D

Accordingly, Z is the relative coordinate of a fixed point, if and only if Z is a solu--
tion of the following differential equation :

az

s +ikZ+1=0. A 4.2

5. The expansion formula for the adjoint crnve -

We can give an adjoint curve by Z = Z(s). Let P, and P be points on the adjoint -

curve corresponding to the points s and s+ ds respectively on the curve (M). The

relative coordinate of the point P, with respect to z(s) is Z(s), and that of the point

P with respect to z(s -+ 0s) is Z(s + 0s). Let W be the relative coordinate of P with
‘respect to z(s). If we fix s, then W is a function of ds. Hence we can write

W = W(s) . G.1)
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(5.1) is the equation of the adjoint curve with. respect to the movmg frame at z(s),
the parameter being ds. If we put
(d’?W _D"Z
dh” ‘p=0 ds”
then the expansion formula for the adjoint curve is given by

33 DZ . (0s)* D*Z
W = Z+ ds+ 21 dst

(h=20d5y (n=1,2,3, ) ,‘ 6.2

S , G3)

D"Z
ds”

For the computation of the following recurrent formulas are useful

\

An+1 = désqn + ili Afn + 80,. »,

D"Z
n = — ’ = y 1, 2’ .........
A ds" , @ : 0 ) ( G4
1 n=0
— 6 n .
=2, ’ ‘{o X0 .

DZ _ dZ

dc _ dz DZ |
S (5.6

In particular, in order to obtain the expansion formula for the original curve (M),
it is sufficient to put Z =0 in (5.4). Then, we can see easily that

Ay=0, A=1, Ap=ix, Aj=ix/ =g, cerrieeen.

Hence we get the following expansion formula for M)::
' k! — K? '
Z=s5+ ‘-2—'— + ——“—g—'-—‘—33 iz afRARREETRE . ‘ (5.7)

In the last formula we have replaced W by Z and os by s. The notations x,
Kl mean £(0), & (O), ------ respectively.

6. The problem on roulettes

Assuming that a curve (M,)
rolls on another curve (M), we
shall consider the locus of a fixed
point relative to (M. From the
assumption, We can represent cor-
responding points of (M) and
(M9 (M) by the same parameter s.

Fig. 3. , Let Z be the relative coordinate
of a fixed point relative to (Mo)
Then the relatlve coordinate of the same point with respect to (M) is also Z. .
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From the condition' of immovability relative to (M,), we get
d.

**"i’sf + i'ﬂoZ + 1 = O ’ ; ,(6'1)
where x, denotes the curvature of (M;). Concerning (M) we get

Dz _ 4z | 741, 6D

ds ds :

‘Subtracting (6.1) from (6.2) we obtain

% - il - w2 | " (6.3)
From the last equation we see that the normal to the roulette at Z(s) passes through
. the point 2(s), a well known fact. Various properties concerning on roulettes can
‘be obtained from (6.3). | » \

7. A necessary and sufficient condition for gearing
Suppose that the curves (M) and (M,) are rolling each other upon another. We
-shall now seek for a necessary and sufficient condition in order that two curves (C)
and (C,), which lie at certain fixed positions relative to (M) and to (M,) respebtive-
1y keep contact with each other for every value of s. We will solve this problem.
As the contact point of (C) and
«(C,) has the same relative coordi- (C,)
nate with respect to (M) and (M,),
we shall denote it by Z. We may ' (C)
~consider thdt the curves (C) and ' '
(C,) are adjoint curves with respect
to (M) and (M) respectively. They
are given by a same equation

Z = Z() . 7.0

For the set of curves (M) and (C),
we get

Fig. 4.

DZ _ dZ . :
e =L iz 1, 7.2

-and similarly for the set of curves My and (Cy) we get

DZ _ dZ . ; |
o e tmZ+ 1, a3 .

where x and &, denote curvatures of (M) and (M,) réspeétively.

‘The required condition is that %SZ— / D df ‘is real for any value of s, namely

22 /(B2 - B2) -,

-
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where x4 is a real function of s. NoW, by v1rtue of (7 2) and (7.3), the equatlon

DZ _ DZ _ ;. _ 74

s s ik — k)2 (7.4
holds good. Consequently, the requ1red condition is that the following dlfferentxal
equation is satlsﬁed :

DZ

= z'/x(lc - Iso)Z . | (7.5
ds .

From the last equation we can easily see a well known property that the common
normal to (C) and (C,) at Z(s) passes through the pitch point.
.From (7.4) and (7.5) we obtain also

DZ _ -1k - k02, 7.6)
ds _
which can be written as
DZ _ e -2, an
ds

provided that p, is a real function of s defined by
M + uy = 1. . (7.8)

- If e :éo ,. the relation Qé- _ Dz

ds ds
Therefore only the pair of curves (M) and (M,) keeps the rolling contact and any’
other pair of curves (C) and (C,) can not keep the rolling contact. There arises
necessarily sliding. -
Let ¢ and o, be specific slidings on the curves (C) and (C,) respectively, they are
- given by v

holds good when and only when Z=10.

P (B2 - 12‘5) o - % | 7.9

It is evident that
QLTI SR J (7.11)
g gy ) :
The formulas (7.9) and (7.10) give the meaning of  and g. The fundamental
equation of gearing (7.5) can be Written also as

az

Y v imZ+1=0, | AL

where

Ky = £ — pu(k — ko) = pok + pKg . (7.13)
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From (7.9), (7.10) and (7.12) we can easily see that the following relations exist:

Kp = ._...K_ -+ __ﬂ. .
gy g
; (7.14)
¢ =K " Ko gy =K E (7.15)
K — K Ko — Kp

8. Tooth profiles with given specific sliding

When the specific sliding is given, we know u = u(s) and hence &, = £,(s). Con-
sider s as arc length and describe a curve (A) having the curvature x,(s). Let us
carry (H) so that the point s = 0 of (H) coincides with the point s = 0 of (M) and
roll (H) over (M). Then as (7.12) shows us, one of the tooth profile (C) is given
as the locus of a fixed point P relative to (H). In the same way, if we carry (H)
so that the point s = 0 of (H) coincides with the point s = 0 of (M) and roll (H)
- over (M), then we obtain another tooth profile (C,) as the locus of the same fixed
point P as above. ‘

Especially the path of contact of (C) and (C,) passes throuh the pitch point when
and only when there exists a value s such that Z = 0, then the fixed point P lies on
the auxiliary curve (H). Analytically any solution Z = Z(s) of (7.12) gives us the
path of cohtact and at the same time it gives us tooth profiles (C) and (C,) as
adjoint curves of (M) and (M,) respectively.

. 9. Tooth profiles with constant specific sliding ‘
Especially, in the case of common gears, that is, in the case when (M) and (My)
are circles or a circle and a straight line, we shall study tooth profiles with a con-
stant specific sliding, Then, as &, £, and g are constants, &, is also a cbnstant,'and
the auxiliary curve (H) is.a circle or a straight line. Hence tooth profiles under con-
sideration. are epicyclics, i. e., they are epitrochoid, hypocycloid, cycloid or involute
etc., as the case may be. In particular when the path of contact passes through a
pitch point, curves of trochoid type must be omitted.

10. Determination of tooth profiles with a given path of ‘contact

By hypothesis Z = Z(t) is a given function of t. From the fundamental equation
(7 12) we have

dZ dt
at as T 1+ 2@ = 0. ; - ao.n
Accordingly, we get ,
dZ dt
== = +1
3 A R (10.2)
AQ) S

where fiw means the real part of w. Solving the differential equation (10.2) with re-
spect to £, we get ¢ = £(s). Then Z = Z(¢) = Z(t(s)), is the parametric equation of

.the required tooth profiles (C) and (Cyp) regarded as adjomt curves of (M) and (M,)
respectlvely.
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11, Determination of ‘the path Qf contact and the mating tooth
profile (C,) when a tooth profile (C) is given
Let two curves :
(M) 2 = 2(8) (1L
and ’

© c=c® 112

be given on the one hand and a curve
(M) 2, = 2,(9) ' 113)

be given on the other., From (3.1) and (5.6) we get

- | c =z + %i Z | a4
de _ dz DZ ' 15)
ds ds ds 1.5

If we put (7.5) into the last equation we get

= fu(k — ICO) = 7, ‘ (11.6)}

ac
ds
that is .
dac dt _ ;o = :
R ICEE DI aLn
Hence we get ’ 7
| | A0, . ‘
% [_L__} ~0. . (11.8)
¢ —-Z(s)

(11.8) is an equation of the form f(s, £) = 0. Solving it, we have ¢ = #(s). Then, .
by virtue of (11.4), we get &= Z(s), which gives the required tooth profile Co as
an adjoing curve of (My).

The equatidn of the curve (Cy) is given by

o = Zo(-s) + ddzsa z(e , 119
and that of the path of contact is given also by Z = Z($)."

12. Determination of all pairs of tooth profiles (C), (Cp
Any pair of tooth profiles (C) and (Cy) is given by

© — 2() + %z_ z, 12.
€ * =2l + ‘fj; z, , az2)

where Z is a solution of* (7.12). As (7.12) is a linear differential equation of the
' first order, the general solution can be given explicitly as follows:
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z = Aexp(~i[ mds) - exp - i mads) [ exn(i [ x,,és)ds, 123

where A is the (complex) constant of integration and «, is an »arbitrary real func-
tion of s.

“ho 4 (Co)
, . | M)
\—'/’1) \_/
x : —Xo

Fig. 5.

13. Another form of the fundamental equation
If we put . N

Z = R® (13D

then (R, @) is the polar
coordinates of the point of
contact of (C) and (C,) with (Mo)
Tespect to the moving frame
at 2(s). If we substitue it
into the fundamental equa-
~ tion (7.12) and separate the

real and the imaginary (M) ,
- parts, we get "~ Fig. 6.
4R | 050 = 0 , 13.2)
ds .
: de ) o _
.R (-E + & ) = sin® 3.3

The last equations are another form of the fundamental equation of gearing (7.12). ‘

14. Deduction of the formula for specific sliding
If we eliminate the term ds from (13.2) and (13.3), we get

K R = 7;% (Rsin®) . 4D |
Hence, by virtue of (7.15), we have the following formulas for specific siiding:
(£y — K) 'g—g“ \
g == n 14.2)
: sin® _ dR
~cos @ +( R K 26
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. (G Zg :
0= : ;. 4.3
cos 0 +( st@ - xo)—‘dig- ‘

The case of the external gearing.

K

Ky

Fig. 7.

In this case, if we set
_1
R,

1

R,

(R;>0)Y,
(R2 >0) ’

in (14.2) and (14.3), then we
¢ have the desired formulas for
specific sliding.
The case of the internal
 gearing. In this case, if we

set

K = -—1— (Rl > O) 3
R,

Ky = (R.> 0)
.Rz .

in (14.2) and (14.3), then we

have also the desired formu-
las for specific sliding.

Fig. 8.

15. Formulas of relative coordinates for the cases of common gears
The case where both (M) and (M,) are circles. In this case we get the following

_ formulas:

M z =1 g, CasD
x| ‘
- ¢ =\—};—| eis (1+ ixZ) , (15.2)
My 2z, = eixos (15.3)
‘ | Ky
o= 1| giros (1+isZ) . (15.4)

| &0

The case where (M,) is a straight line and (M)
is a circle. In this case we get the following
formulas :

(M) 2 = _1_

T

, (15.5)
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¢ = lA eixs (1 + Ail;:Z) , (15.6) y

| x|

My z=s, ' (15.7)

Co=s+Z. (15.8)

-16. A remark on the kinematics on a plane

In various cases for the developements of the
kinematics on a plane, it is convenient to use
complex numbers. However we shall omit the
details here.

‘Fig. 10.

Chapter II. Theory of bevel gears

17. Coordinates of points on a sphere . ‘
Let a be the radius of a sphere. We shall consider oriented great circles NAS,

NBS, which cut orthogonally each other at N and S. Let us assume that when we
rotate the or1ented great circle NAS just

/2 about the axis SN,‘ it coincides with- ‘ Ls
the oriented great circle NBS. We shall +

take axes of rectangular- coordinates x;,
%, ¥; as are indicated in the figure 11
We shall project a point P on the sphere
onto a point in %, ¥,-plane stereographical-
ly from the point S(0, 0,—a). Let Q be
the image of P by this projection, and
(%, %, 0) be the coordinates of Q.

Setting

z=% + it | (= —1) az.n

we shall consider the complex number z
as the coordinate of the point P with
. respect to the coordinate system in consideratiqn.

A rotation of angle ¢ on the sphere about a point x is given by the equation

*_ -
id = mrd a2
This is an equation of the form
& = az—a’B 17.3)

Bz + «

where x is the conjugate complex number of x,



374 ’ Kazuhiko MAEDA

18. Analytic representation of spherical curves _
Let s be the arc-length of a spherical curve, Taking s as a parameter, we can
put the equation of this curve as follows: '

| 2 =2(s). . (8.1
Since s is the arc-length, we see that the following relation holds good : ‘

40t % 1. ' 18.2)
(@*+2z2)?

~ Consider an orientéd circle on the sphere, and let 7 be its spherical radius (0<7<an).
We call £( = 0) defined by :

- - (183

~ the geodesic curVai;ure of the oriented
circle. For a great circle, we have £=0.
If we reverse the orientation of the
oriented circle, then the geodesic curva-
ture changes only its sign.

The geodesic curvature' of the osculat-
ing oriented circle of an oriented curve
is nothing but the geodesic curvature of
the oriented curve under consideration.
The geodesic curvature £ is given by
- the following formula:

e = 2 %27 (z' _ i"_) ) (18.4)
2/ a*+zz ds

If £ = k(s) is given, an oriented curve whose geodesic curvature is the given func-

tion «£(s) is uniquely determined except rotation.

19. Relative coordinates
For a point ¢, we set

o2 2 _ g a9.1)
2/ z2z+a?
or, equivalent to it, we put
L=-D)(Etd) _ 7, i (19.2)

22/ Z¢+ab

Then Z is an invariant for any rotation of the curve z and the point ¢ as a whole
on the sphere. We shall call Z the relative coordinate of the point ¢ with respect
to the frame which consists of the oriented tangent great circle and the oriented
normal great circle at a point z of the curve. By (19.2), ¢-plane is mapped onto



Geometry of Gears , : 375

Z-plane. This mapping is a rotation on the sphere. The point z on the curve is
mapped onto the origin in Z-plane. The tangent great circle and the normal great.
circle are mapped onto the real and imaginary axes respectively.

20. The condition of immovability of a point
From (19.2), we get by differentiation

QU2 -z Lvinz+ 5 20, @0

where we have put

) =
U — 2z Z_ .
a*+zz

Hence, the condition of immovability of a point is that the following differential
equation is satisfied :

dz 1 . 1 oz, 9
s otz + 2= 0. (20.2)

: - 21, The expansion formula for the adjoint curve
Any adjoint curve of a curve is given by :

Z-2z(s). | QLD

- Its expansion formula is given also by

0s DZ . (8s)* D*Z (21.2)

W=Z+1! s T

” ) : .
where 1313 nZ can be computed in turn by virture of the following recurrent formulas:

_ dA, 1 . 1
An—i—l = . ds -+ —2 60n+ leAn“l" ﬁza")” Bn N
n
4a,-2Z, -2, @19

Bn = vz::() ( 1"1 )Av An—v (n = O, 1,:2’ ...... ) ,

Dz _dZ 1 ;.1 »
e =L St iZ s T (21.4)

In particular, in order to get expansion formula of the original curve it is sufficient
to put Z = 0. Therefore writing Z and s instead of W and ds we have the follow-
ing expansion formula of the given curve z(s) : ~ ~

1 3, s
- - Kk ix!
2a*

1 . s 3 :
s+—2—7‘l/€7+ ‘ 2.3! S +'I""""'- : (21.5)

_":..L
2

zZ
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22.. The problem on Roulettes

- Consider the locus of a fixed point with re-
spect to a curve (M;) when (M,) rolls over a
curve (M). We can represent corresponding
points of (M) and (M,) by the same parameter
(arc length) s. If the relative coordinate of a
fixed point with respect to (M,) is Z, the rela-
tive coordinate of the same point with respect
to (M) is also the same Z. As the point is
fixed for (M,) by hypothesis, we get by virture
of the condition of immovability the f0110W1ng ‘

Fig. 13. relation :
dz , 1 Lo @1
s + 5 +zrcuZ+ -2 =0. (22.1)

where &, means the geodesic curvature of the curve (M,). On the other hand we
have

DZ _dZ |1 ., 1

VL - 8L — 7%, . 22.2
ds ds * 2 +MZ+ 2aZZ . 22.2)

From (22.1) and (22.2), we get
P2 i - w0z . (22.3)

From the last equation we see that the normal great circle of the roulette passes
through the contact point of (M) and (M,). :

Various problems concerning on roulettes are solvable by virture of the above equa-
tion, However we shall omit the details here. v

23. A necessary and suff1c1ent condition for gearing

Suppose that two curves (M) and (M,) are
(Co) . i .
( . rolling in contact each other. What is a
C) necessary and sufficient condition in order that
two curves (C) and (C,) which lie at certain
fixed positions with respect to (M) and (M,) "
respectively keep always contact with cach
A(Mo)
other?

We shall solve this problem. The contact
point of (C) and (C,) has the same relative
coordinate for both curves (M) and (M,),

Fig 1. so we shall denote it by Z. 'We may consider

that the curves (C) and (C,) are adjoint

curves of (M) and (M,) respectlvely These curves may be given by an equation
-of the following form:

Z=2(s). = . @3.1)



Geometry of Gears ' » : uﬂ _
For the set of curves (M) and (C), we get

DZ _ dZ \ 1 4z 1

YL - 2 2
ds  ds 2 252’ (23'),

and similarly, for the set of ¢ curves (M) and (C,) we have

" DZ _ dZ 1 1
e et prinltos 20 (23.3)

Wherey £ and Ky are geodesic curvatures of (M) and (M) respectively. The required

condition is that =% / DiZ ; is real for any value of S namely

DZ DZ _ DyZ\ _
ds/(ds\' )=
where u is a real function of s, From (23.2) and (23.3) we have

DZ _ Dz
ds ds

= ik—£Z, (23.9)
Hence the required condition is that the following differential equation holds good :

DZ _ je-kZ . (23.5)
ds
From (23.5) it is easy to see that the common normal great circle of (C) and (Cy)
passes through the contact point of (M) and (M,). ‘

From (23.4) and (23.5), we obtain

DZ _ iy D - kDZ . (23.6)

ds . .

ie. . |
%Soé = il = DZ. (23.7)

provided that u, is a real function of s defined by

At op=1. ' @3.8)

If x> &y, —gsé IZ’SZ holds good when and only when Z=0, Hence, only the
pair of cuves (M), (M) keeps the rolling contact and any other pair of curves (C_),
(Co) can not keep rolling contact. There arises necessarily sliding.

The specific slidings of (C) and (C,) are given by

_(bz _ DzZ\/DZ _ 1 . .
} 7 ( ds ds ) ds P o .(23'9)
and .
_(DZ _ DZ\/DZ _ 1 9310)
oo ( ds) e - (23.10)
respectively. It is evident that (
1 .1 _ 4. ' (23.11)

g ag
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The last equations give meanings of # and ;. »
~ The condition for gearing (23.5) can be written also in the following form :

az 1 1 3 _ © (93.12
s 2 55 Z 0, . (23.12)
where we have put * | \
kp = £ — pu(k — k) = pok + pKy (23.13)
gy = S 4 Fo %(23.14)
Op g

o = FTk g, = 0"k ' (23.15)
: KE—Kp Kop—Kp

24, Tooth profiles with given specific sliding

When the specific sliding is given, we know g = u(s) and hence x; = £,(s). Let
us draw a curve (H) whose geodesic curvature is «,(s), and carry (H) so that the
point s = 0 of (A) coincides with the point s =0 of the curve (M) and roll (H)
on (M), then we obtain a tooth profile (C) as the locus of a fixed ﬁoint P with
respect to (H). In the same way, if we carry (H) so that the point s=0 of (H)
coincides with the point s=0 of (My) and roll (H) on (M,), then we obtain another
tooth profile (Cy) as the locus of the same point P.

Especially, the path of contact of (C) and (C,) passes through the pitch point when
and only when there exists a value s such that Z = 0, then the fixed point P lies on
the adjoint curve (H). Analytically, any solution Z = Z(s) of the fundamental equa-
tion (23.12) gives the path of contact and at the same time it gives tooth profiles
©), (Cp) as adjoint curves of (M), (M,) respectively. ‘

25. Tooth profiles with constant specific sliding
Now let us consider the case where &, £, and x are constants, Then &, is also a
constant and the adjoint curve (H) is a circle. Hence tooth profiles are epicyclics
on the sphere,
Especially, when the path of contact passes through the pitch pomt they must-
belong to the family of cycloids.

26. Determination of tooth profiles with a given path of contact

By hypothesis Z = Z(#) is given. By virture of the fundamental equat1on (23.12)
we have :

dazZ dt , 1 1 s _
’ dt ‘Z;"]“ 2 +ZI£},Z+ 2 VARES O) (26-1)'
Hence we get
1 dZ dt 1 VA
1 v =0, 26.
My G w 2z T2 ) =" 262)

Solving the' last differential equation with respect to ¢, we obtain ¢ = £(s). Then
‘ ‘ Z=2Z® = ZHE$) ,
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is the parametric equation of the reqﬁired tooth profiles (C) and (C,) regarded as
adjoint curves of (M) and (M,) respectively.

27. Determination of the path of contact and the mating tooth profile
(Cp) when a tooth profile (C) is given
By assumption three curves

M - z=2(s), - @1.D.

«® ¢ =¢(t), 7.2)
and _ . :
M) 2y = 2p(s) 27.3)
are given. Then we get ‘
_uzyde _ o dz DZ
a-uv2 do 2 ds ds , 274)

where we have put

(t-2)(zz+ a®)

‘ 275
22'(zc + a®) @7.3)
U= 2272 ' 27.6)
: zz+-a*
The fqndamental equation of gearing is
Z?TSZ — in( - Kk)Z. @D
‘ Hence we get
a-uzy: 9 , Y
# ds 27.8)
22’2 =ip(k — Ko) pr (27.
Accordingly, we have
( a-vzy 4% |
L 7 B | @7.9)
On the other hand, we have
o l—UZ\= 22+ a* s
z2c + a®
A-UZ? _ _ zi+d
22'Z C-2@C+ad
Consequently (27.9) can be written as follows:
ac A
%[ d __]-o. (27.10)

(¢-2)@g+a)
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This is an equation of the form f(s, £) = 0. Solving it we get ¢ = £(s). A
Hence, by virtue of (27.5) we know Z = Z(s), which gives us the required tooth
profile (Cy) as an adjoint curve of the curve (M.,). '

. 28. Another form of the fundamental equation
Let us express the relative coordinate Z by the following equation :

Z = atan-K_ ¢® @8.1)
2a ‘

where R and @ are the spherical polar coordi-
nates of the contact point with respect to the .
frame which consists of the tangent great
circle and the normal great circle.

The relations between the spherical polar
coordinates R, @ and rectangular coordinates

0 X, Xz,' X, of the space are given as follows:
; (cf. Fig. 11
O .
X,=asini:~cos@,
Fig. 15. R
» Xz = gsin '—Z— sin @ ’ (282)
X; = acos R .
a

Sgbstituting (28.1) into the fundamental equation (23.12) and separating the real part
and imaginary part, we obtain ‘

dR

L 4+ cos® =0, ‘ . (28.3)
ds o

R(dO ., .\ _ . o .
ata.n—a—(—zs——l-lc;.)——sm@.v - (28.4)

These are another form of the fundamental equation of gearing.

29. Deduction of the f(';rmu,la for specific sliding
If we eliminate ds from (28.3) and (28.4), we have

. R _ d (. . R
£5 Sin o = —E(sm@sm = ) 29.1)

From the last equation and (23.15), we see that specific slidings of curves (C) and
{Cy) are given by

K — Ky

o= |
_ d@ _ 1 . ' ——R' 4 . ) (29.2)
. K—COS @-71e - sin 6 cot 4 . .
\
_ Ko — & :
o= —6 1 R (29.3),

Ky—C0s® —— — —sin @ cot —
° dR «a a



Geomelry of Gears 381
respectively.

30. ‘Determination of all pairs of tooth profiles
Let R = R(s) be an arbitrary real function of s. We define «, as follows:

m=0 fr  (RY-q, 30.1)
1-(4RY LR
- ,‘/__éﬁ_ cot_—ff.— - \/1—_‘1(‘%&—, . (30.2)
d
for "(%’f—)zeal.

(' ~  has two values.)
Now we set \

Z*=atan2Ra —ZR+z\/ (KR) ) (30.3)

Then we have

&

oo/
A+ o fexp | - (S

By the last equation Z = Z(s), we get adjoiﬁt curves (C) and (Cy) of (M) and (M,),
respectively.

When R(s) is arbitrary real functlons, (© and (Cg) thus obtained give all pairs of
tooth profiles.

) ]

+ix;, )ds] ds: |

Z = 2"

30.4)

31. The relative coordinate for the case of circles
When we choose the coordinate system as is indicated in Fig. 16, the equation of
an oriented circle whose geodesic curvature is &, is given by

z = a*(c — k) exp (ics) , : (31.1D
where we have put |
2 1

= B+ = - 1.2

c=4 & + (31.2)

Hence the relative coordinate Z of a point ¢ is given by the following equations :

— =1 [ ¢—ad’(c— k)exp (ics)
z c—k [ ¢ + a*(c + k) exp (ics) ] GLY
¢ = L=+ IZ, i) (BLY

1~ i(c—-lc)Z‘

In particuar, for the case of great circle, we may put £ = 0.
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Fig. 16.

32. A remark on the kinematics on a spherical surface
In the developments of the kinematics on a spherical surface, it is often convenient
to use the sterographic projection and complex numbers. However, we shall omit
the details \here. (to be continued)



