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Synopsis

The change in the vibrational modes of a binary superlattice alloy due to the change
in its own degree of order has.previously been discussed. It was then expected that the
vibrational specific heat of the superlattice alloy would change in response to the change
in its own degree of order. Using the result obtained formerly, we have applied, in the
present paper, Houston’s approximate method of finding the frequency distribution func-
tion N(V) to the calculation of the vibrational specific heat of [-brass in the state of
any specified degree of order. It is shown that the vibrational specific heat of the
disordered alloy is generally larger than that of the ordered one at oridnary tempera-
tures. If two kinds of atoms which are the components of alloy are nearly equal in
mass, the vibrational specific heat of the ordered alloy becomes larger than that of the
disordered one at low temperatures.

I. Introduction

The vibratiional spectra of monoatomic substances and ionic crystals() have
been'calculated theoretically by many investigators. No theoretical consideration,
however, on the vibrational spectra of superlattice alloys in the state of any
spemﬁed degree of order has been done until now. In the previous paper,® the
vibrational modes of @-brass in the state of any specified degree of order were
investigated in accordance with the method of Born and von Kérmén. As a result
of the calculation, it is expected that the vibrational spectrum of a superlattice
alloy would change in accordance with the changé in its own degree of order. In
the present paper we have made a calculation on the vibrational spectrum and
the vibrational specific heat of J-brass. The theo}y of superlattice which takes
the 1att1ce vibrations 1nto account may be set up, too, but we will reserve it for :
future 1nvest1gat1on.

II. The vibrational spectrum and the vibrational specific heat of $-brass

It is assumed in the present paper that the degree of order once specified for
the superlattice alloy is quenched throughout the temperature range from

*  The 628 th report of the Research Institute for Iron, Steel and Other Metals. Read
-at the annual meeting of the Physical Society of Japan held at Osaka, Nov. 5, 1950.

** Physical Laboratory, Faculty of Science, Tohoku University.

(1) Paper I references (3)-(12). -

(2) Y. Shibuya, Y. Fukuda and T. Fukuroi, Sci. Rep. RITU 3 (1951), 1, which will be re-
ferred to as Paper I in this paper.
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O°K up to the melting point, so that there is no atomic interchange at any temper-
ature. We compared the temperature variation of the vibrational specific heat of

B-brass in the, crdered state with that in the disordered one. As was already

stated in Paper I, we can get by no means a B-brass alloy in the disordered
state owing to its very short time of relaxation. Therefore, S-brass may be in-
adequate as the model used for the direct comparison of the results of"theoretii:al
calculation with the experiment. Characteristic properties of each component
atom are, however, manifested by its mass and force constants in the calculation.
Consequently by taking them as parameters and by changing their values, we
can find the general behaviour of the change in the temperature variation of the
vibrational specific heat of a binary superlattice in accordance W1th the change
in its own degree of order.

We made use of the approximate method® proposed by Houston for the calcula-
tion of the frequency "distribution function N(v). Considering the assumptions

"made and the approximations used in the calculation*, it may properly be said '

_that the results obtained are rather qualitative. In Houston’s approximation
. three “Kubic Harmonics” of lowest order are required. Because some errors**
existed in the Kubic Harmonics used by Houston in his paper, we used the three
functions which had directly been obtained from van der Lage and Bethe’s paper.(4>
They are

K,= —L% P,(cos 6) ,
(4n)

1 (21)‘5
(471)2

K1=

{P4(cos 6)+- 168 v Pyt (cosﬂ)cos<p} ,

and

, ,
K—_ L1 (26
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P 3 . {Ps(cosﬂ)——g@Pg (cosﬁ)c?s4cp} , "

where the P” (cosﬂ) are the associated Legendre polynomlals.
F(,0,¢) corresp‘bndlng to the three directions [100), [110), and [111] are as

follows : | .
' 1 @Dt (26)‘5
Fl(q: 0, 0>= + 1 )+ fz(Q) ’
(4m) @ 2(477.-)%”( Froms.
@Dt 13¢26)%
Fy(g =0)= - (@) - 1)
2(q 3 0)= 7T)Jéfo(qv) )%f @ 3?(4@% 2

(3) W. V. Houston, Rev. Mod. Phys., 20 (1948), 161. :
In Paper I we resorted to Bragg:Williams’ approximation, assuming that the force
between atoms was central, and neglected the contributions from the third neigh-
bours, etc.

** It was first pointed out by T. Nakamura, Butsusei-Ron Kenkyd (in Japanese), No. 24
(1950), 40.

(4) F. C. van der Lage and H. A, Bethe, Phys Rev 71 (1947), 612.
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From these it follows that

N(y)=f [ F (o 0,0)sin0dbdy =40 £i0) |

Fy(g, cos™

_A4rn 1 =z
= {10F1<q,o O+16F (g 0) + IFi(g cos o L -

-

This is plotted ag a
function of v in Fig.
1 for the two ex-
treme cases of S=0
and S =1..

The specific heat
at constant volume
C,, can be derived
from the frequency
distribution shown
in Fig. 1 by means
of the following
equation :

N(v)

~
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Y
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-
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o . ' -V

Fig. 1 Frequency distributibn functions N(y) for the ordered
state (S=1) and the disordered one (S=0). :

hy
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It is, however, not always necessary to use N(») in the form as shown in Fig. 1.

Since N(v) is of such a form as Z‘,A g’ Z"i *, we may. change the independent

‘variable from v to o, and may take vy as a functlon of a. Then

: hy
G ey B

»ka< )2 exp ,;iA al‘ja

Of course, the functienal forms of v’s with respect to different directions and
different branches are different from one another. Although we cannot avoid by all

* It should be noticed that we must use the absoluts value of %‘;"
]
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means some numerical integration, this procedure relieves us of some difficulties
which we encounter at infinite peaks of N(v) in the numerical integration. The

summation 2. should extend over all three principal directions, in each one of
4 \

which all the branches should be taken into account.

. The result of calculation is as follows: the disordered alloy has larger specific -
heat (slighty more than 1 per cent) than the

ordered one at ordinary temperatures. How-  Cv
“ever, as is clearly seen from the low frequency =0
part to N(v) for the ordered state in Fig. 1, a _/"'s;—i"

the specific heat of the ordered alloy is

larger than that of the disordered one at low
temperatures. The crossing of the specific

heat vs. temperature curves for the two states . |/ ‘
occurs at a temperature lower than 50°K. 0 ' T
The difference between the specific heat-tem- Fig. 2 Spéciﬁc heat at constant
perature curve of the ordered alloy and that ‘volume C, as a function of
of the disordered one is so small that we ‘temperature for the ordered

state: (S=1) and the

can hardly show it in a small scale diagram. disordered one (S=0).

It is shown, however, exaggeratedly in Fig. 2.

III. Consideration on the ‘resuits

~ As mentioned above, the characteristic propertie of component atoms of the
alloy are indicated by their masses and force constants in the calculation. Next
we shall change these values in order to investigate the general behaviour of the’
change in the spemﬁc heats of superlattice alloys in response to the change in
their degree of order. ‘

As the first step, let us change the force constants without changing the mass-
ratio. Since the change in the value of the ratio Aa4 - Agp - Aap* does not bring
about a remarkable change in the results, we shall change the value of the ratio
c=244 :vaa. The calculation carried out in Section II corresponds to that perform-
‘ed for the case of this value to be two. The crossing of two specific heat-temper-
ature curves in Fig. 2 shifts towards low temperature side with the increase of ¢,
and towards high temperature side with. the decrease of c¢. Moreover, even in the
t\;vo extreme cases of c= o0 .(the case in which contributions from second neighbours
are negligibly small) or ¢=0 (the case in which those from second neighbours
are extremely large), the crossing still stays at a finite temperature lower than
ordinary temperatures. Therefore, it is likely that the crossing of two specific
heat-temperature curves does occur in case two component atoms of a body-centered
‘cubic superlattice alloy are nearly equal in mass.

Next we assume that masses of two kinds of atoms are considerably different
from each other ('We assume, for example, they are in the ratio 1:3). In this case

) ®
* For the notations as these, see Paper I. ‘
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-the disordered alloy generally has larger (about 3 per cent) specific heat than the
ordered one at ordinary temperatures. If ¢ is comparatively small- (¢£1.5), the
ordered alloy has larger specific heat than the disordered one at low temperatures.
In case of large ¢, however, the Spec1ﬁc heat of the disordered alloy is larger than
that of the ordered one throughout the temperature range defined in Section IL ’
Consequently, if masses of two kinds of atoms are considerably different, it is not

always expected that such a crossing of two specific heat -temperature curves as
shown in Fig. 2 occurs.

Summary

The result obtained above may be summarized as follows: .

(i) If the contributions from the second neighbours to the interatomic forces
exerted on an atom is of long range*, the disordered alloy has larger specific heat
than the ordered one at high temperatures, but, on the contrary, the latter ex-
ceeds the former at low temperatures, so that the crossing of two specific heat-
temperature curves occurs at a certain temperature. This is true irrespective of
the magnitude of the mass-ratio of two atoms.

(i) If the contributions from the second neighbours are small, the crossing
occurs only when two component atoms are nearly equal in mass.

(iii) These circumstances are mainly due to the fact that whereas the peak to
the low frequency side of the vibrational spectrum for the disordered state (S=0)
Temains unchanged irrespectiwe of the change in c, that for the state of .$%0 shifts
generally towards the high frequency side with the increase of c.

* In this case the alloy may be regarded as nearly isotropic.



