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Synopsis

The critical shear stresses of binary alloys were calculated by means of two relations
which have been derived in'the previous paper. The curves of critical shear stress
protted against the concentration of. binary alloys take various forms for different

values of X and Y, where X=—I§_I—T, Y=—%— and H=F —~F")—(F%—F7). F'4, FT,,

F', and F7, are the Helmholtz’s free energy of pure crystal composed of atoms
4 or B in the real or in the imaginary crystal phase respectively, ®,, being the
so-called ordering energy of the alloy. The quantity H hardly depends on temperature

at sufficiently high temperatures. As —)%._—;)—%— becomes smaller, the critical stress

curve protted against the concentration approaches to a symmetric form. But it is very
unsymetric for small values of X and the central part ‘of curve becomes flat for large Y.

The comparison with observations reveals good agreement in the cases of Au-Ag, Cu-Ni
and Cu-Zn alloys.

I. Introduction

The resistance against motion of dislocation has been discussed under the mutual
interference between the elastic strain in long range and the strain field in circumference
of the dislocation®)- in crystals. But even if no elastic strain in long range were found
in the crystal, the dislocation could not proceed freely owing to the structural imperfect-
ness of dislocation centre in the cases when there are vacant lattice sites or other species
of atoms in its centre as in alloys. In the previous paper(? we have described a general
method to calculate the resistance against motion of dislacation: namely the following two
relations have been derivéd from a detailed consideration on the structure of dislocation
centre. \ ,

I. Tt can be considered that the displacement of dislocation along the slip plane is
produced through the repeated process of imaginary lattice transformation. '

Let A G be the free energy difference per mole dissipated in the process of such
lattice transformation, f the resistance to gliding per unit area and V' the molar volume of
crystal, then the following relation is satisfied, -

* The 555th Report from the Research Institute-for Iron, Steel and Other Metals,
Tehoku University.
(1) G. L Taylor; Proc. Roy. Soc. A. 1457(1934) 362. F. Senz and Read; J. Appl.
Phys. 12 (1941) 100; 170; 470; 538. Koehler; Phys. Rev. (1941) 397.
(2) S. Takeuchi and H. Suzuki; Sci. Rep. RITU. 2 (1950), 50.
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| | AGwV.f-AL, } 0
where AL=0.306, )

AL is the amount of deformation accompanied by the lattice transformation.
II. The quantity AG is given by the difference between Gibbs® free energies G"
and G* of the states just before and after the imaginary transformation,

G"=F 4V-a-X-8L,
| (2)

Gi=Fi-V.X.(AL—8L),

where F' and F” are the Helmholz's free energies of real and imaginary state free from
stresses respectively, AL is a limiting value of reversible deformation in the real state
state under a stress X and a a numerical constant (1>az>1/2.) The stress X is regu-
lated so that G” and G satisfy the condition of lattice transformation. o
v As the imaginary phase we take the lattice system which is attained by a relative

displacement of neighbouring atomic planes parallel to the slip plane toward the glide
direction in crystal in consideration. When the face centred cubic crystal is in question,
for example,>we take the body centred cubic latitce as the imaginarily transformed state
and in the case of body centred crystal the face centred lattice is taken.

Using these two relations and the condition of lattice transformation, which has

heen already given by one of the authers(®, the amount of resistance agamst motion of

. dislocation can be calculated.

In order to carry out the calculation of resistance against gliding in metals and
 alloys, we must have a knowledge concerning the free energy of them. It is the most
simple case when the crystal in consideration consists of the complete solid solution and
there is no strain in it. First of all, as a simple apphcatlon of this theory we will try
' to calculate the critical shear stresses of binary alloys. '

Il. The formula for the critical shear stress of binary alloys

When the lattice transformation occurs from the real phase with the concentration
2, to the imaginary phase of the same 2, the real phase must be in a state of excessive

free energy compared with the imaginary phase by a certain amount. This amount is.

given by the free energy difference between both states when a tangent drawn for the

- free energy vs. concentration curve of the imaginary state at the concentration Z; in con-

sideration comes to the common tangent for the both free energy curves. Consequently
we have on the common tangent, .

(3F) ~(5F) -zt )

where &, is another concentration at which the curve of teal phase is in contact with the

-

(8) S. Takeuchi; Sci. Rep. RITU. A 1 (1949), 48. N.K.G. 6 (1942), 361.
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common tangent. Using (2) and (3), AG, the free energy difference to be dissipated
in the process of transformation, is expressed as follows,

. v . ’ OF" \ .
AG=Go—Gh=Fa—Fa—(a—=)( 5, ) ,

because the quantities a+X-.-8L and X-AL in (2) are functions of &;, but are inde-
pended on any other concentration and the change in the molar volume V due to varia-

()

tion of concentration is negligible small. And we have approximately ‘
oF oF |
(5. =50, | (5)
When we substitute from (5) into (4) the resistance to gliding, f, can be calculated. by
means of (1). T

An approximate -formula of free energy for binary alloys is given by
F=(1—2)F,+xzF~+RT{(1—z) log (1 —z)+z log z} +2(1 —2)®; ,

where @ is the concentration of species B of constituent atoms, F, and Fy are the free

energies of pure metals composed of atoms A4 and B respectively, and

(I)1= ZEab—Ea—Eb s

®, is the so-called 'ordering energy. 2E,/Nz, 2E,/Nz and 2E,/Nz are energies of
mutual interaction of a pair of nearest neighbours AB, A4 and BB respectively, 2 is the
number of nearest neighbours around an atom and N is the Avogadoro’s number. Then, -
if the following relation is allowed approximately

’ ¢'l= ‘1=®1
we have . '
AG=G"y— G,y

RT{log 1= +:Cl 10 (1 ) }+(x1 9—”2) D, ‘ (6)
and

—H+RT log ”‘gl “23 + 2(z1~25) P, =0, (7)

‘ . g o

where

H (F'—F) (Fb ")

and this quantity hardly depends on temperature at sﬁfﬁciently high temperatures.
Putting '

RT _ D AG. _
| S e e e
we obtain
1— —_
Z Xlog 1= +x1—(x1‘—.2:g)Y (6)

and
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T . ' ~ N
X1og BU=3) 1 gy . (7

) xz(l "‘xl) - .
Substituting from (7’) into (6") Z is expressed as a function of x;, the concentration of
the alloy. The curves Z vs. concentration take various forms for different values of X
and Y. For example, curves were drawn for Y=0.01 and X=0.1, 0.4 and 1.0 in Fig. 1
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Fig. 1. Curve of Z vs. x.for Y=0.01 Fig. 2. Curve of Z vs. x for X=10

and for X=1.0 and Y=5, 10 and 20 in Fig. 2. As easily seen in these figures when the

quantity —X—=—g—>i becomes smaller, Z approaches to a form, Z=Cx(1—&), where C is
X RT PP

a constant. But the curves are of very unsymmetric form for small values of X and the
central part of the figure becomes flat for large values of Y. '

III. Comparison with experimental data

If the values of constants H and ®; were known, one could by means of the formula
(1), (8), (6) and (7) compute values of the critical shear stress f for various concentra-
tions and temperatures, and compare the values calculated with experimental data. But
as the theory does not predict the values of H and ®; a priori, we must examirie whether
these constants can be so chosen as to fit the experimental data for f, and examine whether
these constants so determined can be consistent with our knowledge of thermodynamical
properties of alloys. , ’

Since the curves of critical shear stress s. concentration contain X and Y as inde-
pendent parameters, it will be very difficult to determine the values of these quantities
precisely by a vague comparison with experimental data. The following formula is very
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useful for this purpose, that is

Zmax = men.xAL .
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1

= 9)
X RT 4XY+X2° _ _ (9)

where Zp.. and fme, are the maximum value of Z and of critical shear stress, under
a set of certain X and Y, respectively. Using the value of fpe, Wwe can easily select a

groupe of curves Z vs. concentration which
have only one parameter. The resultant
determination of the values of X and Y is
then carried out by the following procedure:
that is to construct curves, as shown in Fig.
3, of Z plotted against concentrations for dif-
XorY

ferent values of.the parameter

——and to examine whether any of these

can be supérposed on the experimental curve
of V'f AL/RT plotted against the concen-
tration.

The formula (9) might be obtained by

Fig. 8. A group of curves qf Z vs. x for eliminating @; and &, from (6), (7") and
meaxAL :

L . ' RT A the following condition:

a given value of

re 0.007

0.006¢+

0.002

Fig 4. Critical shear stress of Au-Ag alloys
(after G. Sachs and J. Weerts)

(4)
(5) E. Osswald; %s. ‘f. Phys. 88 (1933), 55.
(6)

oz
2L = f =
Oz )x, Y 0 or . Z= Zmax.

But we have failed to prove (9) an-
alytically, and we have been satisfied
in finding that by numerical calcula-
tion it is always correct in the range
of 0 X<10 and 0SY K 20.

The experimental results for Au-
Ag®, CuNi® and Cu-Zn(®
alloys are given in Figs. 4—6,
where they are compared with theo-
retical curves for suitable values of
X and Y. In the case of Au-Ag
alloys the curves were calculated for
Y=0 and Y=5. It will be seen that
the observed values for very low and
high concentrations deviate from those
curves, and the accuracy of measure-

G. Sachs u. J. Weerts; Zs. f. Phys. 62 (1930), 473.

V. Goeler u.'G. Sachs; Zs. .f. Phys. 55 (1929), 581.
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ment does not yet permit an 0t
exact  determination of Y. N Cu-Nu Allogs

However, at any rate, it may be ;
found that the curves for 0<Y
£5 are more suitable than thar 002
" for the other values of Y. The

deviation of the - theoretical

RT

curves from the observed values s _
for low and high concentrations | iof/
seems to be caused by the fact

that the effect of impurity is not

L F— | BT

negligible compared with that of T T
the other kind of constituent ~ N At %

s 1 L A

40 50 60 70 80 10 100

atoms. ; Fig. 5. Critical shear stress of Cu-Ni alloys
In cases of Cu-Ni alloys the (after E. Osswald)

curve was drawn for a set of

X=1.74 andY =—2 as the most oouy

. Cu-2Zn Alloys
suitable value, but the unsym-

metricity about the abscissa in
the experimental curve is larger
than in the theoretical curve.
For reference, two. calculated

curves for Y=7.6 and 0 were
drawn, but the discrepancy be-
tween the experimental data and
these calculated curves becomes (
greater. It is of interest to : 0 e
notice that the curves of critical

L

20 30

Zn At %

"Fig. 6. Critical shear stress of Cu-Zn alloys

shear stress plotted against the (afier V. Goeler and G. Sachs)

concentration would take a more = e
“unsymmetric from about the abscissa, if the measurement would be carried out at a lower
temperature such as that of liquid nitrogen.

In cases of Cu-Zn alloys the observed values have a very wide flat part correspond-
ing to higher concentration, as shown in Fig. 6. According to the general feature of the
curves of Z vs. concentration, it may be expected that @, will take a very large value for
these alloys. The curves in this figure are calculated for @, =10 Kcal, 7.8 Kcal and 5.3'
Keal respectively. It may be found that there is sufficient agreement between observed
and theoretical values, if we consider the accuracy of measurement.

We will now examine whether the value of X and Y, determined by the above

procedure, can be consistent with our knowledge of thermodynamic properties of these

alloys. The numerical values of X and Y for each alloy are as follows.

afitadh
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Au-Ag alloys: 3.34<X<4.41
' 0< Y5 ~

134< H<179 cal/mol
0<®,< 895 cal/mol

T.<218°K
Cu-Ni alloys: o X~1.74
| ~ Y~20 |
H~340 cal/mol
®,~680 cal/mol
| T,~167°K
Cu-Zn alloys: , ‘ 1<<X<1.33
12<Y<17.3

445< H <592 cal/mol
5.3 Kcal<<®, <10 Kcal
670°<T.<1250°K

where T, is the critical tcmpcrature of superlattice formatxon estimated according to
Bragg-William’s approvimation.

Although we have no informations about H, it will be shown in the forthcoming paper
that those values for H might be reasonable beause they are considerably smaller than
Fi—F7 or Fij—F}. In cases of Cu-Ni and Au-Ag, T, which is so determined as
to fit the experimental data for f, is lower than room temperature, and this fact is consis-
tent with the experimental result that no superlattice has been found in these alloys But
in the case of a-brass, theoretical T, must be higher than 400°C, while the super-
lattice CusZn has not yet been found(™. This discrepancy seems to be caused by the
imperfection of theory of superlattice, because, according to the direct measurements of
vapour pressure® or the electro-chemical measurements of activity(® of Zn in these
alloys, the value of ®; falls into 5~8 Kcal/mol, which is ;6nsistent with our results.

In the evaluation of free energy, used in this paper as well as elsewhere, the differ-
ence of atomic radius in alloys is not taken into account, but it seems to play a very
important role in the resistance to gliding. In order to discuss the effect of difference in
atomic radius, not enly the precise evaluation Qf free energy but further consideration
on the structure of dislocation should be required. We will try to carry out a detailed
treatment on this subject in a forthcoming paper.

. (7) Some authers report on anormallies at 220—450°C in this alloy, but it seems to re-
quire further investigations to conclude that - the anormalhes are caused by
superlattice Cu,Zn.

(8) R. Hargreaves ] Inst. Metals 64 (1939) 15
(9) F. Weibke; Z. f. Metallk., 29 (1937) 79.
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Summary

The critical shear stress of binary alloys are calculated by means of two relations
which have been derived in the previous paper(?); considering the structure of the center

of dislocation. The curves of critical shear stress plotted against the concentration of.

binafy alloys take various forms for different values of X and Y, where X =1§_I—T, Y=§-’-,
H=(Fi—F;)—(Fi{—F3), and Fi, Fi, Fi, and F} are the Helmholtz’s free
energy of pure cvrystal composed of atoms 4 and B in the real and in the imaginary
* crystal phase respectively. The quantity H hardly depends on temperature at sufficiently

. WY D o
high temperatures. A X =RT

to the form, f=Cx(1—&), where C is a constant and & is the concentration. But the

becomes smaller, the critical shear stress f is nearer

curves take very unsymmetric forms for small values of X and the central part of the
curve becomes flat for large Y. ‘
The comparison with observations shows good agreement in the cases of Au-Ag.

Cu-Ni and Cu-Zn alloys, in which two sorts of constituent atoms have almostly the

same atomic radius. The difference of atomic radius between two kinds of constituent

~atoms seems to play an important role in the resistance against glidifg and it is desirable.

to take this factor into acocunt,.
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