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Theory of Plasticity I. o
Correlation between Lattice Transformation
and Plastic Gliding in Metals

Sakae TAKEUCHI and Hideji SUZUKT

The Research Institute for Iron, Steel and Othe1“ Metals.
(Received December 9, 1949) =
;

Syneopsis

Two fundamental relations, which are essential to express the resistance against
co the plastic gliding in terms of the thermodynamic function were, derived, by consider-
ing the structure of dislocation. One is a relation which connects the free eﬁergy
difference AG dissipated during the lattice transformation’ with the mechanical energy’
f-AL required for the plastic gliding and it has been assumed in the previous report.
Here f{ is the resistance against the plastic gliding and AL the amount of deformation
in the process of lattice transformation, its numerical value  being 0.306. Another "
relation gives a method to obtain the free energy difference AG. for a crystal in which
the lattice transformation cannot take place under the usual condition.

N | Introduction‘and;the condition of lattice transformation

"It is well known that attempts to defive the mechanical properties of crystals by .
Vo means of the lattice theory have failed as yet®); the tensile strength, for example, esti-
‘ - mated in this way, is about one hundred times larger than the observed values(®, The
lack of success in these attempts has led many physists to believe that real crystals should
include various types of imperfection such as small holes or cracks, etc., which could
considerably diminish their strength, consequently attempts on using various models for
the imperfection in crystals have been performed so far®. Of these, the dislocation
model® has been accepted as the most appropriate one. It is generally supposed that
the plastic gliding in crystals takes place through the propagation of dislocations along
slip planes. .
Peierls® has proved that, when dislocations exist in crystal, the plastic gliding pro-
ceeds under such a small stress found in actual observations. Though considerable
rough.approximations were used in his calculation, the essential feature of the propagation

* The 5b54th Report from the Research Institute for Iron, Steel and Other Metals.
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" of dislocation was dkesc':rib"'cd' correctly for the crystal which contains only one dislocation
as the imperfection. But further considerations are required to calculate the resistance
against motion of the dislocation in cases as follows: when the crystal includes atomic
defects such as vacant lattice sites and different sorts of constituent atoms, etc., or when
effects of thermal vibration should be in question, these are practically conceivable figures
-~ of natural substances. The dynamical theory of this problem should fail on account of
rﬁathemétigal complexity of the many body problems. We can only expect to avoid the
difficulties on calculation by means of statistical treatment, and it will be the first step
towards this direction to express the resistance agamst ghdmg in terms of thermodynamlc
function. i

In the previous paper(®), starting from the fact that the lattice transformation which
«occurs in the supercooled v phase of carbon steels or iron-nickel alloys resembles the
plastic gliding in their crystallographic mechanisms, we have assumed a relation which
«connects the conditions for occurrence of the plastic ghdmg with that of the lattice trans-
formaUOn This relation is expressed as

AG =fAL,
and

 AL=0.306,

where AG is the free energy irreversibly dissipated in the process of the lattice trans-
formation per unit volume, f the resistance against gliding per unit area and AL the
amount of deformation accompamed by the lattice transformation.

As one of the authors has already shown”) the lattice transformation in such alloys
mneither takes place at the temperature at which both crystal phases a and y are in equi-
librium with each other nor at the temperature at which the free energies of them Having
the same concentration are equal, but it takes place, on cooling, at the lower limitting
temperature in the coexisting region of two phases in which both crystal phases are in
equilibrium, and on heatmg, at the uppcr limit. The free energies of both states are
shown schematically in Fig. 1 in connection with the phase dlagram of the alloy. When
‘the lattice transformation y - a occur$ on cooling, the ¢ phase must be in a state of
excessive free energy compared with the a state by a certain amount PQ, which is
repfesén'ted as the free energy difference between both states when a tangent, drawn for
the free energy .cﬁIV’e of a state at the concentration ¥, in consideration, comes to the
.common tangent for the free energy curves of both states. In this way, a definite
amount of free‘energy is irreversibly dissipated in the process of lattice transformation.
“The resistance against gliding, therefore, can be expressed in terms of thermodynamic
funcnon by applymg the thcrmodynamxc condmon of the lattlce transformation. -

~ {6) 8. Takeuchi and H. Suzuki; Rep RITU. 2 (1950), 45 e
(7} 8. Takeuchi; Sci. Rep. RITU. (1949), 48. ' ‘
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In the following sections, by detailed
censiderations on the structure of the disloca-
tion centre, we will justify the relation as-
sumed in the previous paper and discuss a
method to obtain the free energy difference
AG for a crystal in which the lattice trans-
formation can not take place under usual

- Témperature

conditions.

r X - II. Dislocation model:(thé first
relation)

In the dislocation theory developed by
Orowan(®) and Taylor(®), detailed discussions
concerning the center of dislocation have
been omitted because the distortion of lattice:
arcund it is beyond any argument of the

— Free Energy

theory of elasticity and it was considered

{

“that the propagation of dislocation could

be obstructed only by the mutual inter-

* —= Concentration ference of elastic strain around the disloca-

Fig. 1. Condition of the lattice tion. However, we must suppose that the

transformation motion of dislocation should be mainly gov-

, erned by conditions for the motion of its.

center, being not determined only by the interference of elastic strain around it, because

the energy of dislocation is to be stored as the energy of lattice defects in its centre much.

“mare than as the elastic energy in its surrounding. Since the atomic arrangement in:

the strongly distorted region in the neighborhood of dislocation centre depends upon

the type of -crystal system, we will confine ourselves to the discussion on the case of a
crystal system having “face centred cubic lattice. '

In this case the plastic gliding takes place to the direction [110] along the slip plane
(111), on which the atomic arrangement i$ indicated in Fig. 2 by marks @ representing
.the relative positions of atoms on the plane I neighboring to the plan' II where atoms
are in. positions shown by marks . Though the plastic gliding proceeds by relative:
displacement of atoms @ of the upper plane I to atoms O of the neighbouring plane 11
through the motion of dislocation, there is no reason to.believe that each atom on the-
plane I should move on straight towards the [110] direction. It is rather natural to.
consider that respective atom moves along the courses of the lowest énergy, which are
_most remote from atoms on the neighbouring atomic plane. We can suppose that these
courses are along the direction [211], but zigzag as shown by broken lines in Fig. 2 and.

(8) E. Orowan; Z. Phys. 89 (1934), 634 .
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they must be parallel to the [110] direction in average. In this case, of course, it is un-
necessary to consider that the atomic plane II is fixed and atoms on the plane I alone
move on the zigzag path, we should suppose that atoms on both planes displace rela-
tively so as to pass through the con- :

figuration as shown in the figure.

In Fig. 2, I represents the con-
figuration of the face centred cubic

lattice in the initial state, and when
the atom in I arrives at pesition 2

the relative displacement comes to
0.353, consequently it will not be re-
garded as an elastic deformnation but

rather resembles the displacement of ,
Fig. 2. Path of atoms on the (111 plane

atoms in the lattic transformation of . o
in the process of gliding

fc.c. lattice —> b.c.c. lattice. In the ,
Nishiyama’s mechanism, for example, (see Fig. 3) lattice : points in (a) which
constitute the f.c. lattice turn into the sites which are shown in (b) after the
transformation to the b.c.c. lattice. This process is equivalent to the displacement of
atoms -from the position I to 2 in Fig. 2. The displacement 2—— 3 corresponds
to the reverse transformation b.c.c.—> f.c.c. The configuration in the position 3.
represents a state of twin to the initial state I of f.c.c. lattice. In the same way, the
displacements 3——4 and 4——>35 are equivalent to the lattice transformation
fcc.—>b.cc. and b.c.c.— f.cc. respectively. When the relative positions of atoms
change in this way, some amounts of expansion and contraction in lattice spacing res-
ponding to this change are added.

The potential energy curve
plotted against the amounts of
displacement of the neighbour-
ing two atomic planes in the
direction of gliding, even in a
schematic consideration, will not

be approximated by a sinus curve
with the period of one atomic
distaﬁcc, but, in" addition, a po-
tential with the period of Y

atomic distance will be super

posed on it. Then the usual
picture on the extension of dis-
location will be modified more

or less. But we shall 'omit fur-

) . .Fig 8. Nishiyama’s mechanism in the lattice
ther discussions on the form of : transformation
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of potcntlal for it has little relation to the following discussion concerning the resistance
against gliding.

Thus, it can be considered that the plastic gliding of one atomic dlstance along the
slip plane (111) to the direction [110] in face centred cubic lattice consists of the process
of four repetitions of lattice transformation as follows:

f.c.c. ———>b c.c. ——>f c.c. (twinning state) —>b.c.c.—>f.c.c.

where the free energy. d1551pated on each of sych transformations has the same Value of

AG. Consequently, we may conclude that the energy to be dissipated 1rrever51bly by the
plastic -gliding of one atomic distance is equal to the free gnergy to be required for the
transformation repeated four times. :

Let f be the resistance against gliding, AG the frec energy per mole to be dissipated
in the process of the lattice transformatxon and V the volume occupied by a mole of the
crystal, we have -

4AG=p-f-1,

where [ is the amount of gliding in the direction {110] corresponding to the displace-
ment of one atomic distance, so that

1/4=0.306 .
Rewrmng the above relatlon, we have
' AG=V -f- AL
} (1)
AL=0.306 . :

This is the first relation which connects the resistance against gliding with the free
energy of the lattice transformation and it has been assumed in the previous paper(®.

III. The second relation

. The resistance against the plastic gliding, the critical shear stress, f, of various metals
‘'or alloys can easily be estimated by means of the relation (1) when their free energies
AG for the lattice transformation are known. However, the lattice transformation can
not always take place in metals and alloys, so we must find a method to determine AG
for any metal or alley to calculate the resistance against gliding by means of (1).
In the disclocation model described in II, we have considered that the transformation
takes place in the neighbourhood of the dislocation centre even in cases of metals or
alloys having no transformation under ordinary condition. If the metals and alloys
were put under the same condition as at the circumference of the dislocation centre,
the condition for occurrence of transformation _is satisfied, and AG is calculated in
accordance with the theory of lattice transformation. The reason why the transforma-
tion can occur around the dislocation centre is in the fact that in its circumference there
exists so far larger stress that the lattice around the dislocation centre is fo;éed to deform
far beyond the ordinary limit of elastic strain of the crystal changmg it to the other type
of lattice as a result.. ~~ ' ~

]
o e e 2 R



Correlation between Lattice Transformation -and Plastic Gliding in Metals 55

“In order to carry out the thermodynamic treatment ‘of this process, let 'us suppose
the following ideal process: ‘The whole system consists of a'rigid holder F, on which the
face centred cubic crystal C in consideration is set up, a spring of strength X giving an
extérnal stress to the crystal and a rigid wall E by which further deformation of the

-crystal beyond AL are prevented (see Fig. ' ' '
-4).. The crystal is sticked on the flat holder
-with non-viscous paste at the plane AD
parallel to the plane (111) and fixed only at
the point A rigidly on the holder, so that
_the crystal does no work by the expansion
or contraction, which should be accompanied -

in the process of the lattice transformation.
‘The spring has no weight and a sufficiently
large length that its strength is always kept
paralle] to the glide direction in the crystal even if the transformation takes place.

Since the crystal in this ideal process corresponds to a very small part around the
dislocation, its deformation .may always be uniform except for the instants when the
crystal lattice is in the course of displacement. The pofential energy due to the uniform
shearing deformation of the crystal has the same feature as that in the case of relative
displacement of the neighbouring two atomic planes. According to the argument in II,
the potential energy on account of the relative displacement of the neighbouring two
atomic planes, even for a schematic consideration, will not be represented by a sinus
curve with the period of one atomic distance, but, in addition, a pbtehtial with the period
of % atomic distance will be superposed on it. Hence the potential curve has two inflec-
tion points in the interval of deformation 0 to % atomic distance. In this ideal
process, owing to the rigid wall E, the crystal can not deform beyond AL, namely, the

Fig. 4. Imaginary transformation

potential energy will be represented as Fig. 5, where the full line corresponds to the

case of stress free, and the broken line corresponds to the case of stress X. As easily

seen in this figure, the amount of deformation of crystal is either less than that corres- -

ponding to the first inflection point on the potential .curve which is one nearer to the
initial state or just AL, which is the amount of deformation in the prbcess of lattice
transformation and is equal to the relative displacement of % atomic distance between
the neighbouring two atomic planes. We consider, in the ideal process, that the state
ot crystal deformed uniformly by AL is nothing but the state transformed. to the 1mag1—
nary crystal phase, which is taken as a body centred crystal state.

We have assumed the uniform’ deformation only in the state of rest, but not in the
course of motion. It is rather natural to suppose the deformation as being non-uniform
when the crystal lattice is in the course of displacement, because - the crystal contains
sufficiently many degrees of freedom and thc potcntxal energy will be d1m1n1shcd in the
case of non-uniform deformation compared with the uniform one. Therefore, it is not
neocss:;ry to consider that in order to ffansf;)r;p the crystal the strength of the spring

‘
i
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should exceed a certain value to be required to pass over the steepest region of the poten-
tial curve, namely, the first inflection point in Fig. 5.

At any rate, in thermodynamics all considerations concern only the stationary states,
in other words, all considerations do not depend on the process of transition with.a finite
rate. As the strength of the spring increases with an infinitesimal small rate, the defor-
mation of crystal proceeds with an in
finitesimal small rate satisfying the rela-
tion represented by the potential curve in
Fig. 5. When the deformation takes
place with a finite rate under the force
- X, it should continue until it becomes
AL, because, if the crystal is at rest, the

spring should be balance with the poterr
tial force in Fig. 5, but according to the
argument about the potential curve this

" — Potential enorgy

condition can not hold except for the case

. of transformed state, or the reversibly
)-8 TNeeT deformed state at the instant after when
the deformation immediately takes place

i % alomic distance — .
or 4l with a finite rate.

Amount of deformation -~ The strength X, at which the deforma-

Fig. 5. Potential energy in the imaginary tion takes place with a finite rate, is no-

transformation thing but the strength which causes the

imaginary transformation in this ideal process. Under this stress the crystal is either in

the reversibly deformed state or in the transformed and the free energics of these two
states should satisfy the condition of lattice transformation. 7

When the crystal is deformed reversibly, the Gibbs’ free energy of thls system can

be expressed as the summation of the following terms, if the energy zero is referred to

the state of spring at the time when the crystal under the stress of spring deforms rever-

sibly up to the limiting value, beyond which it deforms immediately with a finite rate:

Helmholtz’s free envergy-of the crystal in stress free state...Fr,

5L
and increase of the internal energy by the reversible strain.... V f Pdl.
' ’ 0

The Gibbs® free energy G is, then,
5L
G'=F"-+V| Pd

: . . 0 .
where V is the volume occupied by a mole of the crystal, . 8L the amount of reversible
deformation under the force X, and  an amount of strain under a shcarmg stress P Of
course the above integral ‘satisfies the relation = )

XSL> f’ Puz XL
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therefore,
G"=F+V-a-X-8L,
2
> a2 1 (2)
2
The Gibbs’ free éncrgy for the transformed state is given similarly:
Helmholtz’s free energy of the crystal in stress free state..... ... Fi,  and
decrease of the potential energy of spring........ 14 -X(AL—BL),

The Gibbs’ free energy G is, then,

Consequently the condition of lattice transformation is satisfied when the quantities
G’ and G' change by a:V:X-8L and V.X(AL—8L) respectively under the stress X,
where 1 >a2>1/2 and 8L<{AL, Namely, by the ideal process, we can consider that
the crystal is able to transform into the other crystal lattice which is unstable and can
not exist under ordinary circumstances. '

The thermodynamic condition for lattice transformatlon is represented by the condi-
tion of comomn tangent for the free energy vs. concentration curves of both phases before
and after the iransformation as described in I. 'Therefore, when the Gibbs’ free ener-
gies obtained as above are plotted against tne concentration of the alloy, a tangent drawn
for the G' vs. concentration curve of transformed state at the given concentration %, must
be the common tangent for the curves of both G* and G" to satisfy the condition of lattice
transformation. The G vs. concentration curve is obtained by making to shift the F/ vs.
concentration curve downward vertically to the axis of concentration as far as the
constant amount V-X.(AL—8L)and the G” curve by making to shift the F" curve
upward as far as V-a-X-8L. The quantities V-X-(AL—8L), V.a-X 8L and the
strength X depend upon the concentration ¥ of .
crystal in consideration i

Let us illustrate the above description graphically
in Fig. 6, in which the free energy vs. concentration

ary state produced by the transformation are drawn
by full lines for the states free from stress. When
- the external stress X is applied by the spring to the

—= Free cnergy

given crystal  these curves shift vertically to the

concentration axis, maintaining the same shape, as . = 7
far as the positions mdlcatcd oy broken lings respec- ~ Fig. 6. Schematic disgram showmg
tively, so that the ‘condition of the transformation, is :g:a)dg‘rggis:f free cnergy in the
satisfied at ;.

The free energy of the imaginary phase, whxch is unstablc under ordinary conditions,

NREER L7 5
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is always higher than that of the real crystal phase, so that we have
Fi'> F".

But when the both phases satisfy the condition of lattice transformauon as a result of
imposing the stress in the ideal process: - " ’

V. -f+AL=AG=G*—G*'=F"—F'4V.a.X-8L+V -X(AL—-8L) .
V.f-AL>V.-X-AL—V.X-3L(1—a). .

All quantities in this expression are positive, so it follows

f>x,

‘and also the quantity (1—a)-V-X-8L is sufficiently small compared with V-X.AL

as shown in the following calculations. This inequality tells us that the stress required
for the forced transformation around the dislocation centre ‘should be always greater than
the resistance against gliding, and this is nothing but the characterlstlc feature concerning
the dislocation. :
_Thus the second relation is expressed as follows: In order to suppose the transfor-
mation for the crystals which could not transform under ordinary condition, it is neces-
sary and sufficient to reduce the free energy of the imaginary phase which could be ob-

tained after the transformation until the condition of the lattice transformatxon, which is
the free energy vs. concentration curves for real and imaginary phase to be in contact
with the common tangent, is satisfied. In this operation the frec energy vs. concen-

tration curves shift without changing their shape.

IV. Summary

Two fundamental relations, which are essential to express the resistance’ against
plastic gliding in terms of the thermodynamlc function were set up, by consxdermg the
structure of dislocation centre. '

(I) Let AG be the free energy difference, per mole, dissipated in the process of
latticet transformation, f the resistance against gliding and V' the volume occupied by a
mole of the crystal, we have ' ' :

AG=V-f-AL  (AL=0.306).

(I1) In order to suppose the transformation for the crystals which could not trans-
form under ordinary condition, it is necessary and sufficient to diminish the free energy
of the imaginary phase which would be obtained by means of the transformation, until
the free energy us. concentration curves for real and VimaAginary phase come in contact
with the common tangent. s

The relation (I) was derived by considerations on the displacement of atoms in slip
planes of crystal’é, in which it was shown that a gliding displacement of one atomic
distance through the motion of dxslocatxon is equivalent to rcpeatmg the lattlcc trans-

*

formation four. times:.
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* The lattice of small region around the dislocation centre is distorted far beyond the
elastic strain of crystal under the strong field of force around the centre. When such
deformed lattice is regarded as a state of the other type of lattice, thermodynamic condi-
tions of lattice transformation for the crystal, in which the transformation can not occur
under usual circumstances, should be satisfied. We obtained the relation (II) by means
of an ideal process concerning the deformation of crystal under a strong field of stress,

_namely, under the stress field around the dislocation centre.

Now, we can calculate the resistance against gliding for any crystals, whose thermo-
dynamic functions are known, by using these two relations.
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