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I. Introduction

Young’s modulus of superlattice alloys
such as CuzPd, CuszAu, CuAu, CuPd, CuZn,
Fes;Al, etc. has been measured by Roehl®,
Siegel®, Koester®®, Rinehart*, Kubo®,
Masumoto and Saito‘® etc. These results
show that Young’s modulus of alloys such as
Cu;Pd, CuzAu and CuZn increases with the
formation of superlattice, while on the
contrary that of such alloys as CuAu, CuPd
and Fe;Al decreases. For the case of CuAu
a slight change in the crystal structure
occurs by the formation of superlattice
but not for the cases of CusAu and CuZn.
The temperature variation of Young’s
modulus of the latter two alloys, as shown

thqg’s Modulus vs Temperature. =~
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in Fig. 1 (a), (b) is quite similar to the
variation of the degree of order for these

alloys with temperature, as shown in Fig.

1 (¢), (d) which was calculated by the
approximate method of Bragg-Williams™
or Bethe®. It seems that there is hitherto
no theoretical explanation for this fact.

Therefore in order to explain this behavior

for the case of beta brass (CuZn) we
developed a qualitative theory, based upon
the Bragg-Williams’ approximation.

II. The relation between Young’s
modulus and the degree
of order

RIERE

Here it is assumed that the interatomic .

foece is central ie. a function of atomic
distance 7, and acts between the nearest
neighbor atoms only. The body-centered
cubic lattice of such a binary alloy as
beta brass can be divided into two
simple cubic lattices I and II.
Fig. 2 which shows an unit cell of a

" body-centered cubic lattice having the
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edge length a, the cube corners represent

- I sites and. the cube center II site. Using

the notation of Fowler-Guggenheim® and
‘Takagi®® number of A atoms (for instance

Cu atoms) on the I sites in the state of the .

~ degree of order S is [A] We define

f similaﬂy [] [ ] [—IBI—] Accord-
. ing to Bragg-Wﬂhamsv approximation, we

AY_1+S AY_1-S

()=, [II]_ Nt D

‘BY_1-S B_ 1+S

(3)-452n (gl-1w
in which N is number of A or B atoms
“(the total number of atoms is 2N).
Denoting the interaction energy between
A atoms by V.. that between B atoms by
Vzs and that between A and B atom by
7a8(=Va4), those are functions of inter-
atomic distance 7 only by the said assump-
- tion. It'may not be unreasonable to suppose

_that 1+9 of A atoms and 1-S of B
-atoms coexist on each I site in the state

2 2

of the degree of order S. These atoms

contribute Vz.(7) defined by the Eq.(2) to
the potential energy of A atom on II site.

Vum—%iv +ASVM @
. Similarly we define Vaa(r), Via(#) and

- Vaa(r).
- (1) Young’s modulus in the ElOO] direc-
tion

- Assume that the unit cell shown in Fig. 2
suffers an elongation 26 in the [100] direc-

. tion without lateral contraction. Then the

shortest interatomic distance 7, (=% )
becomes 7 as given below;

7 =(7y*+0%—27¢5 cos 0)1/”
where ¢ is the angle between 7, and &.

Then

Vaa(#)=V 24V 78+ 88— 270 cosd)
=(Vza)0—8 cos€( d V’“)

+_bzi[ 512}29 d;/'rm«)

+cos26( d dV“) ] ,

ﬂfﬂi) ‘ and d*Vua )0

(Vol. 1, 3
represent values of Vuzu, (dg#) and

I
(ddzzl A) at the point r=7, respectively.

In the above expression higher order terms
of small quantity & was retained to the
second order term.

- Assuming further that

[}
Wriloo, e W
. 14+S\/dVa4\° 1—S\/dVsa\°
i.e. ( 2 )( dr +( 2 (& dr
) =0, etc, (4)’
then Eg.(3) becomes
Vza(r)=(Vza)'+% coszﬁ(d‘;,f“). (5)

'Let the potential energy between A atom

at the cube center O and atoms in the .
(100) plane containing 1, 2, 6 and 5 atoms
be ¢za(7), and

b147)= 3 Vad(r)

[<v1,4>o+~coszo(d Era))

(_‘I_Klﬁ) ]

126

=(Pza)+

The force fza4 which acts between A atom
on II site and atoms on the (1, 2, 6, 5)
plane, caused by the elongation 26 of the
unit cell in the (100] direction, is given by

—_ —00rAr) _ _ 453V a4\
fza= 0 = "3 8( )

dr?
By the substitution with Egq. (2)

Fram—2{(145)( Ty

AP}
Using the following pérameters §.44 etc.,
1 ( axV a4 ) =4 k

3\ dr?
I 725 N G
() e
fra= —4¢5{(1+S)$AA+(128 >€HA}

Sim‘ilary in regard to B atom on II site,

2)ens+(1E%) -

Denoting the surface density of atoms on
the (160) planes by ouw), the unit.area of

fzp=—4¢6 {(
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the (100) pIane containing the atom O at.

the cube center, contains (’155 )tfaoo)'of A

atoms and .(1_28)00({0) of B atoms, since

this (100) plane belongs to the II lattice.
Therefore the force which acts between
atoms on this unit area and those on the
unit area of the neighbor (100) plane con-
taining 1, 2, 6 and 5 atoms, is

F= X (fzatfza)

unit area

=0 100) l(‘—-)fl + (1—58) fzm}
S )

' —20(100)51 (SAA+§BB)+(1+S2)$BA}

This force F corresponds to the attractive
force between two parts of an alloy divid-
"~ ed between the neighboring (100) planes by

an imaginary plane. Now the stress F

arises in the body of the alloy due to the
change from dawy to due+d of lattice
plane spacing. From the definition of

) )
that  F=E 4",

Young’s modulus Ej)y, in the state of the

degree of order S with respect to the [100]
direction can be easily obtained.

-5z
Eulm 20‘(100)61(100){(1 ) )

Young’s modulus

($44+E€rB)
+HA+SDEem) . (D)

Owing to the uncertainty of numerical

values of &4, etc, ESdy
ed from the above equation.

‘cannot be evaluat-
However,
denoting Efij,

by Efiy,

in the state of perfect order

ES&m: 46 100 200y E Ba=4N v d%1100y E B4

where N is the volume density of atoms.
- Accordingly,

o = B0 [(1=S%) (LautEns)
Ean=3 U 2 Y

+(1+52)}. (8)

The above equation gives the relation
between Young’s modulus in the state of
the degree of order S and that in the state
of perfect order.

'(ii) Young’s modulus in the [110] direc-
tion
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When the unit cell suffers an elongation

28 in the [110] direction without lateral

contraction, atoms on the neighboring
(110) plane to the left side of the atom O
which contribute to the change of potential
energy of the atom O in the centre are
only atoms 1 and 2.

Let the contribution from atoms 1 and -

2 to the potential energy of the atom O
be ¢z4(7) or ¢za(r) according to the kind
of the atom O, and from Egq. (3)

5“(f>=EV“(r>=§[<V“>°' |
. + (L xe)
=(hz) 5 bz(d;’;g‘t)f
It follows, !
faa= —__a‘ﬁ_aﬂ;_(ﬂ b(%t?)a
- ol ey

(1) (H)}-
After substitution with 44, etc.,

fza=—48 {(Bz—‘g)éAA+(1_2$)§34} .

Similarly
fEB—-_4b{( )5 a+(1+s>51u}

Since the (110) plane containing the atom
O belongs not only to the II lattice but to
the I lattice, frz4 and frs have also to be
considered. Considering similarly, we get.

fra= —46 {(}—_—8)544+ <1+S)5 “‘;

,f13=—43{(1+s)$ +(128)51u} K

Denoting the surface dens1ty of atoms on.'
the (110) plane by o), one half of atoms
on the unit area belongs to the I lattice and .
another half to the II lattice, and there are

(142-3)0010)/2 of A atoms and (l—zs-)duun/z N

of B atoms on 1 sites, and (158)0(1003/2 of

)amo;/Z of B atoms on 11

A atoms and (~1;S

sites. ,
Then the attractive force F between atoms

on this unit area and those on the neigh- - .

boring plane due to the elongatlon o of

lattice plane spacing, is
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" As before, from the relation

S )o'(uo)/ 2+ f 1,3(!‘—42-—3—)0 uny/2
+f;4(}+s)0(110)/2+f13( 5)6(1103/2 .

= Zam 3 (A= S) 1+ 8K aat (1= e 5}

+{A=S)X1+5)Ern+(1+S ¥ na)
+{A=$ T+ )6+ (1+S)End
+{A+SX1=8)8 5 +(1-S ¢4} |

. cnva
=20’(1m>3{ (1-S§ )(gAA-i—Em;)

+(1+8)E 4}

w 8
F= ELllO) d(xm)

(- Sl(&u-i—é’mz)

)
E Sy =2011058 1109 {

+(1+51)8 54} | 9
Then
Equ— 40330y Aoy § 34

R =4Novd%0,€84. (10)
‘. Therefore we obtain,
E<‘> Eéﬁm {(I—S’) (§44+E88)
o = 2 2 Era
+(1+SD). an

«

Again we obtained an equation in the
(110] direction as similar as Egq. (8).
(iii) Young’s modulus in the [111] direc-
tion

Similarly as in the two cases, above

. described, assume that the unit cell suffers

an elongation 20 in the (1117 direction
without lateral contraction. In the calcula-

_ ‘tion of the attractive force between the

two parts of the alloy divided between
the neighboring ([111] planes by an imagi-
nary plane as shown in Fig. 3, it is not

‘sufficient to take only the force between

'+ the nearest neighboring planes into account.

The spacing between the nearest neighbor-

ing (111) plane is 1‘/?341 Of the four atoms

" to the left side of the imaginary plane
~ which have influence on the atom O, atoms
.* 1, 3'and 6 lie on the first neighboring (111)
.~ plane of the (111) plane containing the

. atom O, and the atom 2 lies on the third

h ‘neighboring (111) plane of it. Atoms on
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Fig. 3. Cross section gf the unit cell
through the 1, 2, 7, and 8 atoms.

the second neighboring plane would exert no

influence on the atom O under the nearest -

neighbor assumption, since they belong to
the same sublattice II as does the atom O.
We denote the potential energy and force
which atoms 1, 3, and 6 contribute to the
atom O, by ¢z4 and fz. respectively, and
those which the atom 2 contributes to the
atom O, by ¢z and fz.”, if the atom O is
A atom. Similarly we define ¢z5', fz5', dz5"
and fzzs”. Moreover, the atom 1 has in-
fluence on an atom in the same relative
position as the atom 2 does on the atom O
(which is to the same side of the imaginary
plane as the atom O), and there is also an
equal interaction between an atom which
is on the first neighboring (111) plane to
the right side of the atom 2 and an atom
on the (111) plane containing the atom 7.
Therefore, when we calculate the attractive
force between two parts of the alloy
divided between the neighboring (111)
planes by an imaginary plane, we have to
take three times of the values summed

over an unit area in regard to fz.’ and

fzg'" into account.

sad =Y +(3) [2- {2 3 (2E4Y)

=(dz4 N + ( )/2 1/3- ( 2Vﬂ4),.
Pz A —(¢IA//)0 ( dd[:{i) .
5\ d*Vza\°
oty = O

== (A5 L)

)G
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’ 0dz4"’ d*Vza
f’“'”* 5=~ )

-3l (5N ).

Then .
fzd =— % {(1-;5)54:4_!_(1;5') 53,4} .
frd'=-3d {(%§)$M+(l——2-§) 534}
Similarly, :

'_fﬂk' =— %‘ {(,%_‘3)5534_(_1%15) 5&4} .
fzm”=-—35{ 1_25) Biz+(1+s)$ A}

Denoting the surface d,ensity of atams on
the (111) plane by &gy, the unit area

containing the atom O has (}-%E)aum of

A atoms and (- —-~—)aum of B atoms on

it, since this unit area belongs to the II
lattice. Then the attractive force F bet-
ween the two parts of the alloy divided
between the neighboring (111) planes by
an imaginary plane, is

F= 3 (fzd+3fzd'+fz8+3fzs")

unit area

=g—386.0'(111){(1—2+-3)( )EAA+( ) SEAI

3 2
2686 g1 1 7“(5144'*‘553)

+(1+sz>eu}.
As before, from the definition of Young’s
modulus E{m) that

(3) .

F=Eih, dam

ES;I)=§2§U(111) dun) (A= )(EAA-*-EJM)
| +(1+sz>sm}. (12)
In the state of perfect order, '
E3y=280amdamésa=28Nod?anfra. (13)
Then
E®, = _@‘%’m {(1—52)2(§::+5n)
+H(L+S). (14)

In this case the result is also similar to
those in the former two cases.

© After eliminating s; etc.

et S5 s (50

;\ ~, . ‘.~ ‘,
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III. Young’s modulus of polycrystalsl

The principal elastic coefficient Sy Sizs
and sy, of a cubic crystal are related to

‘Young’s modulus by the formula T

1/E =sy—2sF(l, m, n)V,

where s=s;—S3— %s“

(15)
and F(l,m, n) is

the orientation function. The orientation
function F(I;m, n) upon which Young’s
modulus in any direction depends is

F(l, m, n)=Dm*+m?*n?+n?l?

in which I, m and # are the direction ;

cosines of the length of the specimen with
respect to tllie crystallographic axes. Upon
substitution of 1/3, 1/4 and zero, respec-
tively, for the orientation function, Eq.(15)
vields 1/Eumy, 1/Eamn and 1/Ege(=sn).
in Egq.(15), it
becomes

1/E=1/Eam—4(1/Eumn—1/Ean) v

X (I2m24-m22+-n2l2) . (16)

Young’s modulus of a quasi-isotropic solid
can be obtained by averaging Eg.(16) with
respect to the solid angle sinfdfde.

- The average value of F(l,m,»n) is 1/5. Then,

(%) =1/Equm—4/5 - (1/Eam—1/Eqn)

=4/5+(1/Ewo)+1/5 - (1/Egm) -

(I/E) may be regarded as that. of a
polycrystal. Young’s modulus of a poly-

~crystal in the state of the degree of order..

S is :
1/E‘”=4/5'(1/E820))+1/5 (I/ES&)} .

From above calculations,
1/EGQn =1/Cf(s)- EQlyy)
and 1/E{e =1/(f(s) EGd,

where v
f(sy=1/g- (U= aatinm 4 gy o).
Accordingly,

1) —
E®=f(s)EM= E2 {(1 S2)(§aa+Err)

2584 .
+(1+8). A7)

Thus for the case of a polycrystal the
same formula as that for the case of a
single crystal in the three prmcmal direc-
tions is obtained.
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IV. Comparison with experiment
' (i) The variation of Young’s modulus
‘with the degree of order

According to the results above obtained,

Young’s modulus of beta brass can be
" expressed by the following formula, whether

it is a single crystal or a polycrystal:

go= EY [(A=S5)(EautEra),
2 LU 2684
+(1+SD}. (18)
Giving several values to the ratios of
parameters .4 etc. the results may be
compared . with those of Rinehart with
respect to beta brass single cwystals, and
with those of Koester with respect to
- polycrystals (Tab.1 (a)(b)). Tab. 1 shows
Young’s modulus with the values greater
than #=1.75 or (=15 decreases with the
decreasing degree of order.

Table 1.

E®/EY for various values of
ratios of paremeters.

(a)
§a4:€Br: 51 =2:1:9 )
n - E®)/E®
1 . (25-0582)/2
15 1
175 (6.5+0.5,§2),/7
2 | aesom
3 | (3+82)/4.
4 (114-58%)/16
(b)
§a4:6rp: 6 =1:1:¢8"
t | E®/EW
0.5 (3-5%)/2
1 1
15 (54+5%) 6
2 (3452 4

These values of the ratios of parameters
may be appropriate to the cases of single

~

Vol 1, 3

crystals in the (1103 direction and of
polycrystals. Tab. 2 shows the ratios of
E®, Young’s modulus in the state of perfect
disorder (at the critical temperature for
order) to EW, that in the state of perfect
“order, and also the ratios calculated with
experimental data.

Nagamiya and others™ developed a
theory of superlattice by taking atomic
vibrations into account. They discussed
‘the critical temperature for order and
anomalous specific heats, giving several
values to &44:6rr:&84. According to it, in
the case of #=2 or ¢=15, their theory
gave better agreement between theory and
experiment in regard to anomalous specific
heats than Bragg-Williams’ or Be:c‘he’s
theory. In the case of =3 or (=2, 4Cy,
the anomalous specific heat in the state of
perfect disorder, agrees more satisfactorily
with the experimental one. &4 etc. adopted
by Nagamiya are

1/dVia\, 1,4V
=g (Fgat) + (5

In our case the second term is vanishing.
Strictly speaking, §44 etc. in. Eq.(19) are not
equal to those in Egq.(6). However, at the
points- in the neighborhood of which V 4

0
’e ) , etc.  (19)

- etc. are the minimum the second term is

nearly zero. In this case it may be said
that our §44 etc. in E¢.(6) are nearly equal
t6 those in E¢.(19). Our assumption express-
ed in Eg.(4) does not assume that individual
-Via etc. are always the minimum at the
equilibrium positions. If the second term
in E4.(19) is vary small, it may be regarded
that our £.4 etc. are nearly equal to
Nagamiya’s §44 etc. As Tab. 2 shows,
Young’s modulus obtained thus theoretical-
ly for the case of »=2 or (=15 agrees
fairly well with that obtained experimental-
ly, and agreement is more satisfactory for
the case of =3 or {=2. We wonder if there
is some significance that both theories of.
ahomalous specific heats and Young’s modu-
lus show good agreement with experiments
for the cases of #=2 or 3 and ¢=15 or 2.
Fig. 4* shows E®/E® as functions of

* For n=3 or (=2, agreement between theory
and experiment is better at the critical tem-
perature Tc, but at intermediate temperatures
agreement is poor.
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Table 2. Comparlson of theoretical E“”/E‘” . ( B
with experlments ' o
" 4 . Experiments .
: ‘ Rinehart Koester
n,3 ' 2 3 15 _ ' 2 (1103 (polycrystal)
E®/E® 87.5% 75% 83.3 ’ 759 78.9% 7052

temperature for »=2 and {=15, and also
shows those obtained from experimental
data of Rinehart with respect to the*[110)
direction of a single crystal and of Koester
with respect to a polycrystal.

Eq.(18) shows that Young’s modulus in
the three principal directions (1007, [110]
and [111] together changes with increasing
temperature as shown in Fig. 4.

(s

Ell’
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09 .

f\O\\: .

08 4

.

07 )

0s ‘

:

.

05+ nN=2 .’

L3

o4}  TTTmooT E=15 :

03 O Rinehart ({110} direcfian) :

. B 1

' o Kagter (polycrysfa!) :

02 ) ]

]

01 :
00 2 1 It . [ . 1 L;\- i

o« /00 200 300 400. Tc 500

Temgerbtu re (°C)

Fig. 4. The temperature variation curves
of E®/E® for the case of n=2
and {=1.5.

Experimental results of Rinehart, however,
show that Young’s modulus in the [100])
direction increases with increasing temper-
ature, reaches a maximum value and then

decreases to ELm], and that Young’s mod-

ulus in the [111] direction shows an appoxi-
mately linear decrease with increasing

temperature to Emn

cannot explain these behaviors.
(ii) The anisotropy of Young’s modulus
Eq.(15) shows there is a linear relation

The present theory

- between reciprocal of Young’'s modulus.and

the orientation function. Next we examined
to what extent the present theory. can

explain the anisotropy of Young’s modulus.’

From Egs. (7), (8), (9), (10), (12) and (13),
we get

1 .1 1 1 .1
ES EQ E

Qi Qin

.1
SV O S I
" E L100) E Qigy E Qi

=1:05:0.43. (20)

Fig. 5 shows comparison of the above =
results with Rinehart’s experimental data.

"‘(s»
E -‘-‘.s
1]
E”

(+00)

10

05 .
A ——O—
B _.___,__}Rinehart

Py Theor,
0 s —

0 o1 02
1 (1o}
(100) "F(l.m,n)

23 1
[

Fig. 5. Em/ (3, against the orientation

function.

A at room tempeérature.
B at 466°C.

The results of Rinehart is quite in agree-
ment with Eg¢.(15). Our result in the (110]
direction agrees fairly well that of Rinehart,
but in the [111] direction the discrepancy is
somewhat large. However, it can be seen
that although our result does not show a
linear relation, 1/E decreases with increas-
ing orientation function. Egq.(20) indicates
that the anisotropy is independent of
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- temperature. Both this result and that of
< Rinehart as shown in Fig. 5 are contrary
to the prediction of Webb that the

 anisotropy of beta brass would decrease

with increasing -disorder and the alloy
would become more nearly isotropic in the
‘neighborhood of the <critical temperature
for order.

V. Conclusion

" Althqugh it may not be justified that the
interaction between atoms in a metal or
an alloy is described in terms of potential
‘energy between two atoms, we assume this
to be the case in the approximation, and
moreover assume that the interatomic
force acts between the nearest neighbor
atoms only. With these assumptions, assum-
ing further that a beta brass crystal lattice
suffers an elongation in one of the three
principal directions of crystallographic axes
without lateral contraction, we obtained
theoretically Young’s modulus correspond-
ing to the state of any degree of order by
calculating the force between two parts
.of the alloy divided between the neighbor
lattice planes by an imaginary plane. Now
that cohesive energy of beta brass has not
- yet been calculated quantum-mechanically,
Young’s modulus thus calculated = may
be regarded as one of a reasonable
‘approximation. It was shown that the
" theory of Young’s modulus with the same
. values in the ratios of parameters .4:%z=
: €34, with which the theory of superlattice
can explain more satisfactorily the anoma-
_lous specific heat of the alloy than Bragg-
- Williams’ or Bethe’s theory does, could
explain qualitatively the experimental re-
sults due to Rinehart or Koester of the

(Vol. 1, 3

temperature dependence of Young’s modulus
and that the theory could explain also in
the same degree of accuracy the results
due to Rinehart in regard to the anistotropy
of Young’s modulus.

In conclusion the writer gratefully

"acknowledges his indebtedness to Professor

T. Fukuroi for advice and valuable sugges-
tions throughout the work: to Assistant
Professors T. Katayama and H. Watanabe
for their discussions. .
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