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The electronic and phase-coherent transport properties of doped carbon nanotube junctio
studied. It is shown that there are regions of negative differential resistance in theI-V characteristic
of small radius metallic tubes, which are not seen for semiconducting tubes. Their origin
discussed, is different from that of traditional Esaki diodes and resonant tunneling struct
Semiconducting tube characteristics, however, show a region of zero current for nonzero voltages
is asymmetric with respect to the applied bias if there is different doping on each side of the junc
[S0031-9007(99)09542-3]
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The possibility of doping carbon nanotubes with a
kali or halogen atoms has been the subject of recent
periments [1,2] and theoretical works [3]. It has bee
shown experimentally that introducing dopants chang
the conductivity of nanotubes [2,4]. Anab initio method
based on the all electron density functional formalism h
been used to study the feasibility of inserting typical a
kali metals into nanotubes [5]. Nanotube doping can al
be achieved through interaction with a substrate, whi
affects the carrier concentration and shifts the chem
cal potential of the tube [6]. On the other hand, it i
now understood that electronic properties of nanotub
strongly depend on their geometry. This geometry is us
ally specified by a pair of integerssm, nd [7].

It is the purpose of the present work to study the nonli
ear transport characteristics of doped nanotube junctio
These junctions are formed by shifting the levels of ea
half of the tube, in the absence of bias, through dopin
The overall shift of the energy levels can result from di
ferent ways of doping the two sides of the tube and/or a
plying an external potential difference between them. Tw
sides of a nanotube can have different dopings due to
introduction of different dopant atoms [8]. Substrate do
ing can also be different for two sides of a nanotube due
for example, polycrystal substrate or substrate roughne
For the case of doping by the substrate, a typical expe
mental value of the initial shift of the chemical potential a
a result of doping is,0.3 eV [6] for Au substrate, which is
due to the difference of the work functions of the nanotub
and the substrate. For doping by typical alkali and hal
gen atoms, on the other hand, the initial shifts were fou
to be , 20.5 and ,0.5 eV, respectively, by a previous
4-orbitalyatom self-consistent tight-binding calculation o
ours [8].

In order to calculate electronic and transport prope
ties of doped nanotube junctions, we exploit the se
consistent tight-binding approach [9] to properly includ
the effects of charge transfer at the junction. The su
face Green’s function matching (SGFM) method [10]
then used to obtain the transmission matrices. Final
Landauer’s formalism is used to obtain the conductan
0031-9007y99y82(25)y5084(4)$15.00
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and the current-voltage (I-V ) characteristic of the system.
The present study is restricted to phase-coherent transp
i.e., the electron-phonon interaction is ignored.

Within the self-consistent tight-binding formalism, we
model a carbon nanotube by the following Hamiltonian:

H ­
X

i

s´i 1 UHdnida
y
i ai 1

X
kii0l

Vpa
y
i ai0 , (1)

where the sum over lattice sitesi and i0 is restricted to
nearest neighbors. We consider onep orbital per atom
and set the value of the hopping integral equal to 1
(Experiments [6] show good agreement with theoretica
results forVp ­ 2.7 6 0.1 eV.) Henceforth, the unit of
energy is chosen to be the hopping integral, unless oth
wise specified. The Hubbard termUHdni is added for the
self-consistent treatment of charge transfer at the junctio
anddni is the change in the occupation number at sitei,
compared to that of the bulk crystal. The self-consisten
treatment is needed in order to obtain the exact form of th
potential drop at the junction, especially when a large ex
ternal potential difference is applied to the two sides of th
system. We use the experimental value of the Hubba
coefficient UH for carbon,UH ­ 10.00 eV [11], which
is nearly 4 times the hopping integral (we setUH ­ 4).

We consider two such systems, call themA and B,
and attach them together at the junction. Each syste
(nanotube) is a semi-infinite quasi-one-dimensional lattic
which can be divided into successive identical principa
layers. A principal layer is composed of a few unit cells
of the crystal under consideration such that each princ
pal layer interacts only with its nearest neighbors. In th
present study, on-site energies´i of the systemA are con-
sidered to beV 1 U0A. They are shifted compared to
those of the systemB, taken to beU0B. Here,U0A and
U0B indicate the initial shifts of the chemical potentials
of systemsA andB due to doping, andV is the external
potential difference applied to the two sides of the system
Therefore, in computing transport properties, the applie
biasV enters as a parameter in the scattering matrix an
the transmission matrix elements. In other words, the sca
tering matrix would be a functional of the (self-consistent
© 1999 The American Physical Society
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potential drop profile at the junction, which itself depend
on the applied biasV . This approach is analogous to th
one adopted in recent studies [12] on transport in coher
mesoscopic systems in order to include the nonlinear
fects. As an example to illustrate the effect of doping,
the present work initial shiftsU0A ­ 0.2 andU0B ­ 0.1,
andU0A ­ 0.3 andU0B ­ 0.0, are assumed in the calcula
tions for metallic and semiconducting tubes, respective
These values determine the initial position of chemical p
tentials with respect to the density of states when there
no external bias.

The potential drop profile at the junction is depicte
in Fig. 1 for V ­ 0.5 and V ­ 2, in the s3, 0d metallic
zigzag tube and in thes7, 0d semiconducting zigzag tube.
In this figure, each layer index indicates a ring of carbo
atoms, which consists of3 and 7 atoms in thes3, 0d and
s7, 0d tubes, respectively. Layers 1 through 4 indica
the rings of the last principal layer of systemB, while
layers 5 through 8 indicate the rings of the first princip
layer of systemA. These two principal layers define the
interface region. Without the self-consistent treatmen
the potential drop profile at the junction would be a step
height0.5 for V ­ 0.5, and of height2 for V ­ 2. Self-
consistent calculation, however, results in deviation fro
the step drop, and smoothens the potential profile. We c
notice small oscillations for larger biases. As we hav
assumed that the potential drop occurs only within th
interface region, the electric field is fully screened in th
region and the total charge of the junction is conserved

There are different approaches to calculate transmiss
matrix elements [13] for the matched system. Follow
ing Chico et al. [14], we calculate these elements usin
the SGFM method. The conductance of the system
then obtained from Landauer’s formula [15] asGsE, V d ­
s2e2yhdT sE, V d ­ s2e2yhd

P
ab jtabj2, where tab is the

transmission matrix element between channelsa of sys-
temA andb of systemB, andT sE, V d is the transmission
coefficient betweenA and B. Finally, the current across
the junction is obtained using the Landauer-Büttiker fo
mula [16]

FIG. 1. Self-consistent potential drop at the junction.
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Z `

2`

dE T sE, V d f fBsEd 2 fAsEdg , (2)

wherefA andfB are the Fermi distributions of systemsA
andB, respectively.

The results of conductance calculations are shown
Fig. 2(a) for the junctions in as4, 4d armchair tube, and
in Fig. 2(b) for as7, 0d zigzag tube, for different values of
the biasV . These tubes have nearly equal radii; 2.67
for s4, 4d and 2.70 Å fors7, 0d. In these calculations, both
sides of the junction have the same geometry; i.e., both a
either armchair or zigzag. Figure 2 shows that by shif
ing the chemical potential of one side of the system, bo
the number of conducting channels and the transmissi
coefficient are changed compared to theV ­ 0 case. In
order to describe the effect of decrease and/or increase
the number of conducting channels for each energy a
the selection rule involved, we consider, as an examp
the band structure of thes4, 4d tube, which is depicted in
Fig. 3(a). The armchair tubes4, 4d has fourfold rotational
symmetry; therefore the states in each of the nondegen
ate bands in Fig. 3(a) are eigenstates of the rotation ope
tor around the axis of the tube, with the same eigenvalu
Degenerate bands, however, are linear combinations of
eigenstates of the rotation operator whose eigenvalues

FIG. 2. Conductance of doped nanotube junctions (in uni
of 2e2yh) for different values of the potential differenceV for
(a) armchair tubes4, 4d, and (b) zigzag tubes7, 0d. All energies
are in units of the hopping integral.
5085
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be extracted by diagonalizing the rotation operator with
the degenerate subspace. In Fig. 3(a), all the bands
double degenerate except for the uppermost and low
most ones, as well as the two bands crossing at the Fe
level. The bands are labeled according to their eige
value under rotation, expsimpy2d; m ­ 0, 1, 2, 3. Con-
sider the conductance of thes4, 4d tube for V ­ 0 as an
example. Figure 3(a) shows that atE ­ 20.5 there are
only two conducting channels with positive group veloci
ties and with the same rotational eigenvalue1, in each of
the systemsA andB. Therefore at this energy the conduc
tance of the unbiased tube is2 3 2e2yh. Now consider
the case of a biased tube withV ­ 1. The band structure
of mediumA would be shifted along the energy axis by
one unit, and is depicted in Fig. 3(b). AtE ­ 20.5, the
two channels which were conducting forV ­ 0 are not
conducting forV ­ 1. Instead, only one channel with ro-
tational eigenvalue 1 and positive group velocity is now
conducting, namely, in the lowermost band in Fig. 3(b
Therefore, one of the conduction channels is suppress
and the conductance is decreased by one unit. Mo
over, the overall rounding of conductance curves, whic
produces further reduction of conductance, results fro
imperfect conduction (jtabj2 , 1) between channels with
the same rotational eigenvalue, but different wave vecto

The I-V characteristics at temperatureT ­ 0 of s4, 4d
ands3, 3d armchair tubes, as well as those ofs7, 0d, s5, 0d,
and s3, 0d zigzag tubes, are depicted in Figs. 4(a) an
4(b). These curves are obtained by assuming a st
potential difference at the junction, without any self
consistent calculation of the potential drop. For thes3, 0d
tube, however, the curve obtained from a self-consiste
treatment is also given for comparison. One can notic
that the current from the self-consistent calculation
larger than the current of the step potential calculation. A
is apparent from Fig. 1, the smoothening effect of the se
consistent treatment of thes3, 0d tube is of the same order
as that of a larger tubes7, 0d. Therefore, we expect that

FIG. 3. Band structure of thes4, 4d armchair tube for
(a) V ­ 0 and (b) V ­ 1. For the horizontal axis,l is the
lattice constant between two adjacent principal layers. Ban
labels indicate rotational eigenvalues.
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the self-consistent calculations of the current for larg
tubes also differ slightly from the step potential ones.

It is seen from Fig. 4(a) that for the armchair case, the
are regions of negative differential resistance (NDR), sta
ing at jV j . 1 (the exact value depends on the initial dop
ings). This occurs when the conductance reduced by
suppression of one conduction channel enters the integ
tion window fBsEd 2 fAsEd in Eq. (2) [as is explicitly
seen from Fig. 2(a)]. AsjV j is further increased, this re-
duction of current persists until the shift of the Fermi leve
of mediumA causes other channels with the same rot
tional eigenvalue to conduct, so that the current begins
increase again. This occurs atjV j . 1.40 for the s4, 4d
tube, and atjV j . 1.68 for the s3, 3d tube. These are the
widths of the (pseudo)gap of these metallic tubes. W
can notice an enhancement of the NDR as the tube rad
gets smaller. The NDR feature has a wide range of a
plications including amplification, logic, and memory, a
well as fast switching. The unique character of the ND
of metallic nanotubes is that its mechanism, i.e., the sel
tion rule involved, is a direct consequence of the rotation
symmetry of carbon nanotubes, and is different from t
mechanism responsible for NDR in Esaki diodes and res
nant tunneling structures. As the main cause of NDR is t

FIG. 4. Current (in units of hopping32eyh̄) for (a) armchair
tubess4, 4d and s3, 3d, as well as (b) zigzag tubess7, 0d, s5, 0d,
ands3, 0d. For thes3, 0d tube, the self-consistent (s.c.) solution
is also given for comparison.
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rotational symmetry selection rule between the eigensta
of bulk systemsA and B, we do not expect the assump
tion of sharp potential drop to qualitatively modify the
results of our calculations.

Next we consider the case of zigzag tubes in Fig. 4(b
While there exist regions of NDR for thes3, 0d metallic
zigzag tube, theI-V characteristics ofs7, 0d and s5, 0d
semiconducting zigzag tubes do not contain regions
NDR. However, there exists a region of zero curren
for nonzero potential differences in theI-V characteristic
of these semiconducting tubes, which is asymmetric wi
respect to the sign of the bias. This arises from th
asymmetric modification of the gap of these tubes due
the initial dopings. The small leakage current which
observed for thes7, 0d tube is due to the fact that for this
tube the maximum conduction condition,V ­ 2jU0A 2

U0Bj ­ 20.3, occurs out of the gap. Because of th
asymmetry of itsI-V characteristic, the junction of doped
semiconducting tubes can function as a rectifier, in mu
the same way that an ordinaryp-n junction is used for
rectification, provided thatjU0A 2 U0Bj is large enough.

A few comments are now in order. First, the abov
mentioned effects for metallic and semiconductin
nanotubes depend on the detail of their band structu
i.e., the width of the gap and the interband separati
for eigenstates with different rotational eigenvalues. A
the gap width is inversely proportional to the diamete
of the tube [7] and the number of bands increases w
increasing diameter, we expect these effects to dimini
for tubes with larger diameters. Second, temperatu
affects transport through both the Fermi distributions o
electrons in Eq. (2) and the electron-phonon interaction
The former effect is negligible unless at temperature
comparable to the hopping integral. As for the effect o
phonons, one can assume that only acoustic phonons
scatter electrons, provided that the temperature is bel
the optical phonon frequency. Acoustic phonons on
slightly modify the hopping integrals due to small lattice
distortions. For the metallic and semiconducting tube
because of having few and no states at the Fermi level,
spectively, and given the very low energy of phonons, the
cannot scatter electrons from an occupied state to an em
state except at the interface region, which is a negligib
volume of the whole system. We therefore expect th
electron-phonon interaction to be negligible, especial
for kT , h̄voptic. Third, up to now, it was assumed
that the rotational symmetry of the tube is not broken a
a consequence of doping. In real situations, however,
might not be the case. Donor and/or acceptor dopa
might be located closer to some of the carbon atoms th
others, and the effect of substrate doping depends on
distance from the substrate. We have investigated t
effect of small disorders, either static or due to phonon
by adding random numbers of mean zero and standa
tes
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deviation 0.05 to the on-site energies. It was foun
that the current decreased by,10%. The qualitative
features of theI-V curves, however, were not affected
Fourth, the phenomena predicted here can be obser
in experiments, provided that the nanotube diameters
small enough. The substrates for the two sides of t
junction should have the same height in order to preve
the formation of bending defects [17], or additional inho
mogeneities. Moreover, the experiments should be p
formed at sufficiently low temperatures in order to preve
the incoherency caused by electron-phonon interaction

In conclusion, the nonlinearI-V characteristics of
doped metallic and semiconducting nanotube junctions
calculated. It is shown that suppression of one conduct
channel, due to the rotational symmetry selection rule,
sults in regions of negative differential resistance (NDR
for metallic tubes. For semiconducting tubes, on the oth
hand, a rectifying characteristic is observed due to t
different initial dopings. The above mentioned effec
depend on the details of the band structure and are
minished for tubes with larger diameters.
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