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We demonstrate that both microwave resonant absorptions and multiple-branch structures in thI-V
characteristics observed in intrinsic Josephson junctions are caused by the dynamical breaking
charge neutrality inside the atomic-scale superconducting layers. The Lagrangian for the time-depe
Lawrence-Doniach model incorporating the charge neutrality breaking effect is proposed. On the
of the Lagrangian, the longitudinal collective Josephson plasma mode is proved to exist. The bran
behaviors in theI-V curves are almost completely reproduced by careful numerical simulations for
model equation derived from the Lagrangian.
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Intrinsic Josephson effects (IJE’s) in highly anisotropi
high temperature superconductors (HTSC’s) [1–3] ha
attracted growing interests [4,5]. Recent experiment
studies have shown two remarkable phenomena for IJE
i.e., the microwave resonant absorptions [6] and th
multiple-branch structures inI-V characteristics along the
c axis [1].

In Bi-2212 single crystals, the microwave resonan
absorption has been observed for both longitudinal a
transverse microwave configurations in cavities. The
two configurations yield different dispersion relation
[7]. The absorption in the longitudinal configuration ha
been established to be caused by the excitation of t
longitudinal Josephson plasma propagating along thec
axis. The existence of such a longitudinal mode indicat
the dynamical breaking of the charge neutrality (DBCN
of superconducting layers in the presence of an ac elec
field along thec axis. A novel coupling between junctions
arising from this effect has been proposed in [8], whic
may bring about new collective dynamics in IJE.

The I-V curves along thec axis in Bi-2212 form a
branch structure with almost equal interbranch spacin
and the number of branches is nearly equal to th
number of junctions in the stack [1,9]. It has bee
widely believed that such a branch structure manifests t
independence of junctions; that is, the coupling betwe
junctions is negligible, so that each junction behave
independently [9]. However, such an understanding
irreconcilable with the interpretation for the microwave
resonant absorption as mentioned above.

In this paper we claim that both phenomena observ
in Bi-2212 have the common origin. A model Lagrangia
is proposed which can describe both the longitudin
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Josephson plasma and theI-V curves with the multiple-
branch structure.

Let us first discuss the essential difference betwe
charge dynamics in the intrinsic Josephson junction s
tems and that in a conventional superconductor-insulat
superconductor (SIS) array. In Fig. 1 we depicted t
physical events accompanying the electron tunneling
both systems. The charge screening length,m, in the
superconducting state is much the same as the Thom
Fermi length��O�Å�� in the normal state and is much
shorter than the thickness of superconducting lay
in conventional SIS arrays. As a result, the electr
field generated at a junction site is completely screen
out at the junction site; that is, the charge neutra
ity inside the superconducting layers is almost strict
maintained. Thus, the longitudinal coupling betwee

FIG. 1. Schematic views of (a) conventional stacked S
junction and (b) the intrinsic Josephson junctions. The arro
indicate the direction of the tunneling current and the induc
electric field.
© 1999 The American Physical Society
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different junction sites is not formed. On the other
hand, in HTSC this situation does not hold, because
the thickness of superconducting CuO2 layers ��3 Å�
is comparable with m. Hence, one may expect that
the screening effect is imperfect in a single supercon-
ducting layer and then the electric field induced at
a junction site penetrates into neighboring junctions.
The charge neutrality inside the superconducting layers
is thus dynamically broken, and the coupling between
junctions appears in intrinsic Josephson-junction systems
when the ac Josephson effect is taking place [8,10].

Let us now propose a Lagrangian which describes
the DBCN in intrinsic Josephson junctions. Though the
pairing mechanism in HTSC has not yet been settled,
we may construct a phenomenological model on the
basis of the time-dependent Ginzburg-Landau (TDGL)
theory, which is basically independent of the detail of the
electronic states and the pairing mechanism,

LLD �
X

�

Ω
s

8pm2

∑
A0�z�, t� 1

h̄
e�

≠tu�

∏2

2
h̄
e�

jc�1 2 cosP�11,�� 1
eD
8p

E2
�11,�

æ
, (1)

where s and D, respectively, are thicknesses of the
superconducting and insulating layers, m is the charge
screening length, e is the dielectric constant, E�11,� is
the electric field (� layers) between �� 1 1�th and �th
superconducting layer, e� � 2e, and P�11,��� u�11�t� 2

u��t� 2 �e��h̄c�
R��11�D

�D dz Az�z, t�� is the gauge in-
variant phase difference. In Eq. (1) the charge
density of �th superconducting layer, r��t�, is ex-
pressed as r��t� � 2�1�4pm2� �A0�z�� 1 �h̄�e�� ≠tu��.
This Lagrangian corresponds to a discrete version
of the TDGL theory at T � 0 K [11,12] for multi-
Josephson-junction systems when m and jc are taken
as m �

p
m�y2

f��12pe�2D2� and jc � h̄e�D2��MD2�,
where yf is the Fermi velocity, D is the amplitude of
the order parameter at T � 0 K, and m� and M are the
effective masses parallel and perpendicular to the layers,
respectively. The first term in Eq. (1) represents the
interaction between the charge density and the scalar
potential in superconducting layer. In conventional SIS
junction arrays, this term is dropped and the dynamics
originating from only the second and third terms in
Eq. (1) has so far been intensively studied [12,13]. This
is because the coefficient s�8pm2 is considered to be
very large in conventional systems, which indicates that
L has a deep minimum at ≠tu� � 2�e��h̄�A0�z��, i.e.,
the Josephson relation, and the deviations from this
minimum gives high-energy excitations [13]. However,
this is not the case in HTSC’s, since the thickness, s, of
CuO2 bilayers is comparable with m. This means that the
fluctuations arising from the first term in Eq. (1) cannot
be neglected in HTSC’s and the charging energy inside
the superconducting layers is comparable with that of
the ac Josephson effect in Bi-2212. This is the essential
point that discriminates the IJE’s from the ac Josephson
effects in conventional arrays.

Let us now prove that the Lagrangian (1) has the
longitudinal plasma mode. To study the response to a
longitudinal electric field along the c axis, we derive the
dielectric function. In charged systems the Goldstone
mode is absorbed into the longitudinal gauge field and
the gauge field becomes massive. To describe this
situation clearly, we utilize the phason gauge [14],
in which the gauge condition is given by ≠tA0�z�� 1

�y2
B�c� ��Az

�11,� 2 Az
�,�21��D� � 0, where Az

�11,� �R��11�D
�D dz Az�z��D, and yB��

p
�8pm2�s� �e��2h̄�jc D�

is the phason velocity. Note that the neutral ver-
sion of Lagrangian (1) without the gauge fields gives
the Euler equation for u� in the linear approxima-
tion as �2≠2

t 1 y
2
B�1�D2�D�2��u� � 0, with D�2�u� �

u�11 2 2u� 1 u�21. For the gauge transformation,
Az

�11,� ! Az
�11,� 1 �h̄c�e�D� �x�11 2 x��, A0�z�� !

A0�z�� 2 �h̄�e��≠tx�, the gauge condition imposes the
equation for x�, �2≠2

t 1 y
2
B�1�D2�D�2��x� � 0, which

is the same as the Euler equation for u� in the neutral
case. This result implies that the phason mode can be
eliminated by the gauge transformation in this gauge, and
the Lagrangian (1) is rewritten as
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Variation by A0 in Eq. (2) yields one of the Maxwell
equations,

E�11,� 2 E�,�21 � 2
s

em2 A0�z�� . (3)

On the other hand, from E�11,� � 2≠tA
z
�11,��c 2

�A0�z�11� 2 A0�z����D, and the gauge condition, it
follows that

E�11,� 2 E�,�21 �
D

y
2
B

µ
≠2

t 2
y

2
B

D2 D�2�
∂
A0�z�� . (4)

Then, from Eqs. (3) and (4) one finds the dielectric func-
tion for the electric field perpendicular to the junctions,

e�v, kz� � 1 2
v

2
pl

v2 2 2av
2
pl�1 2 coskz�s 1 D��

.

(5)

In deriving Eq. (5) we used the relations, �s�em2�
�y2

B�D� � 4pe�D�eh̄ � c2�el2
c � v

2
pl and 2y

2
B�D2 �

�8pm2�s� �e��h̄�jc � 2av
2
pl with a � em2�sD. As

seen in Eq. (5), the dielectric function has zero points at
v�kz� � vpl

p
1 1 2a�1 2 coskz�s 1 D��, and thus, the

longitudinal plasma mode propagating along the c axis is
found to exist. Note that when the first term in Eq. (1) is
dropped, i.e., a � 0, this mode has no dispersion.

Let us next examine the dynamics of the gauge-invariant
phase difference P�11,��t� in the presence of a transport
current I . From the Lagrangian (1) and the modified
Josephson relation, ≠tP�11,��t� � �e��h̄�V�11,��t� 2

�4pm2e��h̄� � r�11�t� 2 r��t�� [8], we can derive the
4619
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equation for P�11,��t� in the presence of a bias current I

1

v
2
pl

≠2
t P�11,��t� 1 sinP�11,��t� 1

b

vpl
≠tP�11,��t� �

I
jc

2 a�sinP�12,�11�t� 2 2 sinP�11,��t� 1 sinP�,�21�t�� , (6)
where vpl � c�
p

e lc and b � 4pslc�
p

e c � 1�
p

bc

and bc being the McCumber parameter. In Eq. (6) the
dissipative (quasiparticle) current is introduced. Equa-
tion (6) was first derived by two of us (T. K. and M. T.)
phenomenologically for a stack of the intrinsic Josephson
junctions [8], and afterwards Preis et al. gave the micro-
scopic basis for this equation [15]. It is noted that the
parameter a is the coupling constant between junctions
included in the first term in (1); i.e., in the limit of a ! 0
Eq. (6) is reduced to the RCSJ model [13]. One also no-
tices that Eq. (6) has a plane wave solution with the disper-
sion relation of the longitudinal plasma mode [8,10]. From
numerical simulations for Eq. (6) we can get the I-V char-
acteristics in intrinsic Josephson-junction systems. In the
following we solve Eq. (6) for the system composed of ten
identical junctions under the periodic boundary condition.
The values of the parameters are chosen as a � 0.1 and
b � 0.2, which correspond to the Bi-2212 case [15,16].

Figure 2(I) is a hysteresis loop in the I-V curve. In
obtaining this curve, the current I is increased first above
the critical current jc and then decreased to zero along
the arrows in Fig. 2(I). In the current increasing process,
we find a jump at jc, where all junctions synchronously
switch into the same resistive states. In Fig. 2(II), the
time developments of the normalized Josephson currents
sinP�11,� at point B are plotted for all the junction sites.
The figure shows that all the junctions synchronously

FIG. 2. (I) The I-V hysteresis curve. The current is increased
and decreased along the arrows. The time development of
sinP�11,� on the junctions from � � 0 to 9 at points (II) B,
(III) C, and (IV) D.
4620
whirl. Further current decrease causes several steplike
structures as seen in Fig. 2(I). Figures 2(III) and 2(IV)
show the time developments of sinP�11,� of all junction
sites at points C and D, respectively. Some junctions are
in the resistive state, in which sinP�11,� periodically varies
from 21 to 1, while the others are in the superconducting
state with tiny oscillations. By monitoring the time
evolution of sinP�11,� around C and D one may see that
the number of resistive junctions decreases as the current
decreases through the steps. Such behavior is never
observed in the absence of the coupling �a � 0�, in which
all the resistive junctions switch into the superconducting
state at a constant current value.

Let us now study the region around the points C and
D in more detail. Figure 3(a) shows the I-V curve en-
larged in the region around C and D. In this region, we
get different I-V curves when a decreasing interval dI
is changed. In Fig. 3(a), two cases with different dI are
plotted. These behaviors imply that several bifurcation
points are distributed in this narrow region of the parame-
ter I. Hence, we performed the calculations many times,
changing dI, to get all the branches (trajectories). When
the current is reincreased from points on the branches
along the arrows as seen in Fig. 3(a), the multiple-branch
structure appears as Fig. 3(b). The obtained I-V curves
are composed of equidistant branches and the number of

FIG. 3. (a) The enlarged view of the transition region in the
I-V curves. The points indicated by circles and squares are
those on two different I-V curves obtained for different current
intervals. (b) The multiple-branch structure obtained by the
current reincreasing process.
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branches �� 10� is equal to the number of junctions in
this system. In this simulation we introduced the Nyquist
noise to get the first and ninth branches. These results
indicate that all the resistive branches correspond to the
stable trajectories of Eq. (6); that is, Eq. (6) can reproduce
the multiple-branch structure without any inhomogeneities
of the junction parameters. In real experiments to get the
multiple branches one has to repeat the current increasing
and decreasing processes many times. These experimen-
tal processes are equivalent to the processes in our simu-
lations to get all the bifurcations as seen in Fig. 3(a).
Also, we mention that if a free boundary condition is
employed, in which peculiarities of the top and bottom
junctions are considered, all the branches can be obtained
without noise.

Finally we discuss why Eq. (6) can give the multiple-
branch structure. To answer this we have to clarify the
two points, that is, why the steplike transitions appear in
the current decreasing process as seen in Fig. 3(a) and why
the branches are stable in the current reincreasing process.
In this paper we concentrate on the first point, since
Takeno et al. have already touched the latter question in
the context of the stability of localized whirling (rotating)
motions in coupled rotator models [17] and have shown
that the bounded character of the trigonometric functions
in the coupling terms is essential for the stability of
the localized rotating motions. As shown before, the
steplike jumps seen in Fig. 3(a) result from the transitions
of the resistive junctions into the superconducting state.
This fact implies that each junction can switch to the
superconducting state at a different current value from one
another, though all the junctions are equivalent. Such a
behavior reminds us about a stack of independent junctions
with different junction parameters. Note that the total
driving force (current) on the right-hand side of Eq. (6)
is composed of two components, i.e., the external current
I�jc and the Josephson currents at neighboring junction
sites, Ĩ� � 2a�sinP�12,��t� 1 sinP�,�21�t��, when the on-
site term, sinP�11,��t�, is transposed to the left-hand side
of Eq. (6). This fact indicates that the total driving force
acting on each junction depends on the dynamical state of
neighboring junctions. Let us now investigate the case in
which both of the nearest neighbor �� 6 1th� junctions are
in the superconducting or in the resistive state, supposing
that the �th junction is in the resistive state. In the former
case Ĩ� is very small, since the Josephson current on the
neighboring junctions shows tiny oscillations around stable
points. As a result, the total driving current is nearly equal
to the external current I�jc. On the other hand, in the latter
case, the minimum of the instantaneous driving current is
given by I�jc 2 2a; that is, we have a moment at which
the total driving current is sufficiently smaller than I�jc

in this case. This observation indicates that the transition
to the superconducting state is more likely to occur in
the latter configuration than in the former one. Hence,
the present system has more than one switching current
and the transition points are distributed in some range
of the parameter I . From these considerations one may
conclude that the switching between branches in the I-V
characteristics is caused by the coupling between junctions
due to the imperfect charge screening of the CuO2 layers
along the c axis, i.e., the dynamical charge neutrality
breakdown.

In conclusion, we have shown that the charge neutrality
inside the superconducting layers in intrinsic Josephson
junction is dynamically broken, and the microwave reso-
nant absorption and the multiple branch structure in the
I-V curves are caused by this effect. The effective La-
grangian which can describe these phenomena has been
proposed.
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