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Using a 3D parallelepiped model of the stack of intrinsic Josephson junctions, we calculate the cavity

resonance modes of Josephson plasma waves excited by external electric currents. The cavity modes

accompanied by static phase kinks of the order parameter have been intensively investigated. Our

calculation shows that the kink phase state is unfavorable, since the static phase kinks reduce the order

parameter amplitude and thus the superconducting condensation energy. We point out that the oscillating

magnetic field of the cavity mode penetrates the vacuum from the sample surfaces and the energy of the

magnetic field plays an important role to determine the orientation of the cavity resonance mode. On the

basis of the above discussions, we calculate the I-V characteristic curve, the THz wave emission intensity

and the other physical quantities.
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Emission of terahertz electromagnetic (em) waves from
intrinsic Josephson junctions (IJJ) in high temperature
superconductors has been extensively studied [1–8].
Recently, Ozyuzer et al. succeeded in detecting strong
and continuous emission of terahertz em waves from
mesa-shaped samples of the high temperature supercon-
ductor Bi2Sr2CaCu2O8 (BSCCO) [9]. The general mecha-
nism for the emission is as follows. When an external
current is applied along the c axis, the ac Josephson current
in the resistive state excites a cavity resonance mode of
Josephson plasma wave in the sample. The excited stand-
ing wave of Josephson plasma is converted to a terahertz
em wave at the mesa surfaces and the em wave is emitted
into the vacuum space. However, details of the mechanism
have not yet been clarified, although it is important for
designing the terahertz em wave emitters with use of IJJ.

Recently, Hu and Lin [10,11], and Koshelev [12] pro-
posed the following new mechanism. When the inductive
interaction between the superconducting CuO2 layers in
BSCCO is strong, static kink structures arise in the phase
difference of superconducting order parameter between the
superconducting layers. The phase kinks induce cavity
resonance modes of the Josephson plasma. This is a new
dynamic state caused by the nonlinear effect special in the
IJJ system. In this Letter, we first discuss the stability of
this new state, and then we investigate the mechanism of
the terahertz em wave emission on the basis of the
discussion.

For the sample of IJJ, we use a model shown in Fig. 1. In
this figure the superconducting CuO2 layers and the insu-
lating layers in the IJJ are shown in green and light green,
respectively. An external electric current is applied in the
direction of the z axis, perpendicular to the layers. The Lx,
Ly, and Lz are the sample lengths, respectively, along the x,

y, and z axes. Now, we derive the equation for the simu-
lation. The superconducting order parameter of the lth

layer is expressed as �l ¼ �lðr; tÞ exp½i’lðr; tÞ� with r ¼
ðx; yÞ, x, y and t referring to the spatial and temporal
coordinates, respectively. We assume that the amplitude
�lðr; tÞ is constant independent of space and time, and only
the phase ’lðr; tÞ is dependent on space and time. In this
case, the current density along the z axis is given by a sum
of the Josephson, quasiparticle, and displacement current
densities as

Ilþ1;l ¼ Jc sinc lþ1;l þ �cEz;lþ1;l þ �

4�
@tEz;lþ1;l; (1)

where Jc is the critical current density, �c is the normal
conductivity along the c axis, and Ez;lþ1;l is the electric

field between (lþ 1)th and lth layer along the z axis. In
Eq. (1), c lþ1;lðr; tÞ is the gauge invariant phase difference
defined as

c lþ1;lðr; tÞ ¼ ’lþ1ðr; tÞ � ’lðr; tÞ � 2�

�0

�
Z zlþ1

zl

Azðr; z; tÞdz; (2)

FIG. 1 (color online). Schematic view of intrinsic Josephson
junctions.
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with the vector potential Azðr; z; tÞ and the flux unit�0. For
the superconducting current density in the CuO2 plane, we
use the generalized London equations, since the Ginzburg-
Landau parameter is very large in BSCCO. We insert
Eqs. (1) and (2) into Maxwell’s equations along with the
superconducting current in the CuO2 layers. Following the
calculation procedure given in [6], we have

@2x0c lþ1;l þ @2y0c lþ1;l ¼ ð1� ��ð2ÞÞðsinc lþ1;l

þ �@t0c lþ1;l þ @2t0c lþ1;lÞ: (3)

In above equation, we use normalized units for length and
time, respectively, defined as x0 ¼ x=�c, y

0 ¼ y=�c, t
0 ¼

!pt, where !p is the plasma angular frequency, and �c is

the penetration depth of the magnetic field applied along
the x or y axis from the xz or yz surface. The parameters in
Eq. (3) are defined as � ¼ �2

ab=sd and � ¼ 4��c�c=
ffiffiffiffiffi
�c

p
,

where the s and d are the thicknesses of the superconduct-
ing and insulating layers, respectively. �ab is the magnetic
field penetration depth from the xy-plane surface and � is
the inductive constant between the CuO2 layers. The op-

erator �ð2Þ is defined as �ð2Þfl ¼ flþ1 � 2fl þ fl�1. In
Eq. (3), we neglect the charging effect in the CuO2 layers,
since we consider the region above the retrapping point,
and in this region the charging effect is much weaker than
the inductive effect between the CuO2 layers. Keeping in
mind that the IJJ is Bi2Sr2CaCu2O8, we choose �ab ¼

0:4 �m, �c ¼ 50� 150 �m, s ¼ 3 �A, d ¼ 12 �A, � ¼
0:02, and � ¼ 5� 105.
We express the phase difference c lþ1;lðr; tÞ as

c lþ1;lðr0; t0Þ¼!Jt
0 þc t

lþ1;lðr0; t0Þþc s
lþ1;lðr0Þþ

I0

4
r0 �r0:

(4)

The first term in the right-hand side of Eq. (4) is the phase
difference due to the ac Josephson effect, the second term
is the phase difference due to the excited cavity mode, the
third term is a static phase difference, and the fourth term is
the phase difference due to an external current density I0
normalized by Jc.
The sample lengths L0

x, L
0
y, and L

0
z which are normalized

by �c are taken to be 1, 3, and 0.01, respectively. Although
the samples used in the experiments [9] is composed of
several hundreds of intrinsic Josephson junctions, to sim-
plify the calculation we impose an assumption that the
phase difference has a four junctions periodicity along
the z axis. Since the sample length along the z axis is
much shorter than the wave length of terahertz em wave,
the em waves emitted from the side surfaces of the sample
are not plane waves. The boundary condition in this case
has been given by Bulaevskii and Koshelev [13]. We use
the boundary condition and tentatively take Bx=Ez ¼ 	 ¼
�0:1 at the xz surfaces and By=Ez ¼ 	 ¼ �0:1 at the

yz-surfaces, Ez, Bx and By being, respectively, the oscillat-

ing parts of electric and magnetic fields at the sample
surfaces. Under the boundary condition, we numerically
solved Eq. (3) and obtained a solution of the static phase
difference c s

lþ1;lðrÞ with a kink and antikink structure at a

cavity resonance voltage V0 ¼ 3:96 as shown in Fig. 2. The
normalized voltage V 0 is defined by V=Vp, V and Vp being

the voltages between the CuO2 layers and @!p=2e, respec-

tively. As seen in the figure, the kink phase structure occurs
along the y axis. The oscillating electric field of the cavity
mode at a time is shown in Fig. 3(a). The electric field Ez is
almost uniform along the x axis, and the electric field along
the y axis is a standing wave with two wave lengths. The
amplitude of the oscillating electric field is symmetric with
respect to the center of the sample along the x and y axes.
The electric field pattern of cavity mode in Fig. 3(a) seems
to be consistent with the electric field distribution recently
observed by Wang et al., using low temperature scaning
laser microscopy [14]. The oscillating magnetic fields Bx

and By at the time is shown in Fig. 3(b) and 3(c). The

absolute value of Bx is much larger than that of By inside

/πψs

l+2 ,l+1

/πψs

l+1 ,l

FIG. 2. Typical configuration of the static phase difference.

FIG. 3 (color online). Snapshot of the
electric and magnetic fields at V0 ¼ 3:96
and I0 ¼ 0:106. E0

z, B
0
x, and B0

y are elec-

tric and magnetic fields normalized by
�0=2��cd. The sample with the lengths
L0
x ¼ 1, L0

y ¼ 3, and L0
z ¼ 0:01 are used.
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the sample and at the yz surfaces. This state with phase
kinks is similar to those obtained by Hu and Lin [10,11],
and Koshelev [12]. In the above calculation, when we took
several kinds of the initial condition with modulations
along the z axis for the phase difference c lþ1;lðr; tÞ, we
obtained the two types of phase kink state. The internal
energies of the phase kink states consist of superconduct-
ing current energies and electric and magnetic energies.
The internal energies have almost the same value in inde-
pendence of the initial conditions. If we took an initial
condition that the phase difference is perfectly uniform
along the z axis, we obtained a solution of the state without
phase kink in place of the solutions with phase kinks. The
calculated internal energies of the phase kink states are
lower than that of the state without phase kink, and the ratio
of the energy of the phase kink state to the energy of the
state without phase kink is about 0.8.

The kinks of the phase difference in Fig. 2 cause the
�-kinks in the CuO2 layers and the �-kinks reduce the
amplitude of superconducting order parameter around the
kinks. The cause of the reduction of the order parameter
amplitude is similar to that in the vortex core of the
Abrikosov vortex. The reduction of the amplitude de-
creases the superconducting condensation energy. Using
one dimensional model along the y axis and the Ginzburg-
Landau equation (GL eq.), we estimate the decrease of
the condensation energy due to the kinks in the following
way. From GL eq. we obtain the coupled equations for
the amplitude � and phase ’: @2y�� �ð@y’Þ2 þ��
ð�3=�2

0Þ ¼ 0 and 2@y�@y’þ�@2y’ ¼ 0. The y axis is

normalized by the coherence length 
, and �0 is the
amplitude of the order parameter without kink. We use a
linear approximation for ’ inside the kink with the width
y0 and express ’ ¼ ð�=y0Þy, y taking the values from 0 to
y0. The value of y0 is approximately equal to �c=ð


ffiffiffi
�

p Þ.
Under the condition, the coupled equations give the rela-
tion ð@y’Þ2 ¼ 1� ð�=�0Þ2 inside the kink. Using this

relation we calculate the decrease of the condensation
energy due to the kinks from the formula Ec ¼ ðH2

c=8�Þ�R½1� ð�=�0Þ2�dV, Hc being the thermodynamic critical

field. For the estimation of value of Ec, we use the values

Hc ¼ 1 T, 
 ¼ 50 �A, � ¼ 5� 105, and �c ¼ 100 �m.
Then, if we add Ec to the internal energy of the kink phase,
we obtain that the total energy of the kink state is 2� 3
times larger than the internal energy of the state without
kink. Therefore, the state with phase kinks is unfavorable
for the state without kink.

In the calculation of the resonance mode shown in Fig. 3,
we have missed an important fact. As shown in Fig. 3 the
magnitude of Bx is much larger than that of By at the yz

surfaces. Although the oscillating magnetic field Bx does
not contributes to the radiation, it penetrates the vacuum
from the surface. We should add this magnetic energy in
the vacuum to the internal energy of the state. If the
resonance occurs along the x axis instead of along the y
axis, the magnitude of By becomes much larger than that of

Bx. Since the xz surface area is narrower than the yz surface
area for the sample, the magnetic energy penetrated from
the xz surface into the vacuum is smaller, and thus stabil-
izes the magnetic field B along the y axis. Therefore, the
cavity resonance mode occurs along the x axis rather than
along the y axis in the sample [9]. The origin of the
magnetic energy stabilizing B along the y axis in this
case is similar to that of the shape anisotropy energy of a
ferromagnet that stabilizes its magnetization along the
longer size direction of the ferromagnet.
On the basis of these discussions, we investigate the

physical properties originating from the cavity resonance
along the x axis in the states without phase kink. In the
following calculation, we assume that the magnetic field B
is parallel to the y axis as is discussed above, and use the
boundary condition By=Ez ¼ 	 ¼ 0:1 at the yz surfaces.

Figure 4(a) shows the calculated current-voltage (I-V)
curve for L0

x ¼ 2. As seen in the figure, two sharp peaks
appear, respectively, at the normalized voltages V 0 ¼ 2:9
and 6.2. These sharp peaks are caused by the cavity reso-
nance of the excited electric and magnetic fields in the
sample. Since the amplitude of the oscillating electric field
is large at the resonance voltages, the sharp peaks are
considered to be internal Shapiro steps induced by the
oscillating electric fields in a self-consistent way [15].
Figure. 4(b) shows the current-voltage curve for L0

x ¼ 3.
The cavity resonance voltage at V 0 ¼ 1:7 almost coincides
with the retrapping voltage [9]. The sharp resonance peaks
have not been observed in the experimental current-voltage
characteristics in large BSCCO mesas. This discrepancy
may come from the fact that heating effect is not included
in the present theory. A snapshot of the oscillating electric
and magnetic fields for L0

x ¼ 2 and at V 0 ¼ 2:9 is shown in
Fig. 5(a). The amplitudes of both the electric and magnetic
fields are asymmetric with respect to the center of the
sample. Figure 5(b) shows the emission intensities (the
time averages of the Poynting vectors) for the boundary
condition parameters 	 ¼ 0:1 and 	 ¼ 1 as functions of
V0. The black circles indicate the emission intensities for

FIG. 4. I-V curves in the two cases of (a) L0
x ¼ 2 and

(b) L0
x ¼ 3.
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	 ¼ 0:1. The sharp emission peaks appear at the cavity
resonance voltages as seen in Fig. 4(a). The maximum
emission power at V 0 ¼ 2:9 is estimated to be 23 mW for
the sample with L0

x ¼ 2, L0
y ¼ 3, L0

z ¼ 0:01, and �c ¼
100 �m. The blue circles in Fig. 5(b) show the emission
intensities for the boundary condition parameter 	 ¼ 1.
The 	 ¼ 1 indicates that By=Ez is equal to �1 at the yz

surfaces, and the boundary condition is that for the emitted
em wave being plane wave. The plane wave emission
occurs when Ly and Lz are much longer than the wave

length of the emitted em wave. As seen in the figure, the
voltage dependence of the emission intensity for 	 ¼ 1 is
very different from that for 	 ¼ 0:1 and the intensity van-
ishes at the cavity resonance voltages. Matsumoto et al.
have calculated the intensity in this case and shown that the
oscillating electric and magnetic fields vanish at the yz
surfaces [16]. The results indicate that the emission inten-
sity strongly depends on the sample size relative to the em
wave length. Each of the blue circles in Fig. 6 denotes the
lowest normalized voltage V 0 or the lowest normalized
frequency of the cavity resonance for each of 7 samples
with different L0

x. As seen in the figure, the blue circles are
on a line.

The conclusion of this Letter is as follows. The cavity
resonance state with the static phase kinks is unfavorable,
since the phase kinks reduce the order parameter amplitude
around the kinks and thus the superconducting condensa-
tion energy. Nonradiative component of the oscillating
magnetic field of the cavity resonance mode plays an

important role to determine the orientations of the cavity
resonance modes. The orientation is closely connected
with the sample shape. In the I-V characteristic curve,
sharp peaks appear at the cavity resonance. At the reso-
nance, sizable powers of the continuous and coherent
terahertz wave emission were obtained.
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FIG. 6 (color online). 1=L0
x dependence of the first resonance

voltage. The solid line represents the linear fitting. L0
y is taken to

be 3.

γ=0.1

γ=0.1

γ=1

FIG. 5 (color online). (a) Snapshot of the electric and magnetic
fields at the top of first internal shapiro step V 0 ¼ 2:93 and I0 ¼
0:112. The normalization of E0

z and B0
y is the same as that in

Fig. 3. (b) Voltage dependence of the intensity of emission from
intrinsic Josephson junctions. The length of the sample is L0

x ¼
2. Black circles and blue circles show the emission intensities in
the cases of 	 ¼ 0:1 and 	 ¼ 1, respectively. The time average
of Poynting vector S0 is normalized by cð�0=2��cdÞ2=4�.
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