Mxing of the order parameters with dx2－y2－ and dxy－wave symmetry in d－wave super conduct or s

著者	Koyana T．，Tachi ki M
j ournal or publ i cat i on titl e	Physi cal Revi ew．B
vol une	53
number	5
page range	$2662-2666$
year	1996
URL	ht t p：／／hdl ．handl e．net／10097／53214

Mixing of the order parameters with $d_{x^{2}-y^{2-}}$ and $d_{x y}$-wave symmetry in d-wave superconductors

T. Koyama and M. Tachiki
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-77, Japan

(Received 28 August 1995)

Abstract

We derive the Ginzburg-Landau equation for two-dimensional d-wave superconductors with fourfold symmetry. The two d-wave components of the order parameter with $d_{x^{2}-y^{2}}$ and $d_{x y}$ symmetry are mixed by the component of a magnetic field perpendicular to the two-dimensional plane. The mixing of the two components causes a significant paramagnetic effect in the strong-field region.

Recently there has been a lot of controversy concerning the symmetry of the order parameter in cuprate superconductors. ${ }^{1}$ Some of the recent experiments for the superconducting state in these compounds have been interpreted in terms of d-wave symmetry. ${ }^{2-10}$ To investigate the properties of the mixed state in cuprate superconductors phenomenological theories based on the Ginzburg-Landau (GL) approach have been developed for two-dimensional (2D) d-wave superconductors with four-fold symmetry. ${ }^{11-15}$ Most of the theories proposed so far assume the order parameter having dominantly $d_{x^{2}-y^{2}}$-wave symmetry and mixing with the s-wave component in the mixed state. The possibility that the two d-wave components $\left(d_{x^{2}-y^{2}}\right.$ and $\left.d_{x y}\right)$ are mixed under a magnetic field has not yet been fully considered. In a previous paper ${ }^{16}$ we showed that the mixing between the two d-wave components cause a significant paramagnetic effect in the strong-field region and brings about an anomalous enhancement of the upper critical field. In this paper we examine the derivation of the GL equation in 2D d-wave superconductors and show that the order parameter with $d_{x^{2}-y^{2}}$-wave symmetry can mix with the component with $d_{x y}$-wave symmetry in the presence of a magnetic field.

In 2D d-wave superconductors with fourfold symmetry about the z axis the gap function is expanded in terms of the basis functions having $d_{x^{2}-y^{2}}$ and $d_{x y}$-wave symmetry as

$$
\begin{equation*}
\Delta_{\mathbf{k}}=\eta^{(+)}\left(\hat{k}_{x}^{2}-\hat{k}_{y}^{2}\right)+2 i \eta^{(-)} \hat{k}_{x} \hat{k}_{y} \tag{1}
\end{equation*}
$$

where $\hat{k}_{x}=\cos \theta_{k}$ and $\hat{k}_{y}=\sin \theta_{k}$, and $\eta^{(\pm)}$is the complex amplitude (note $i^{2}=-1$). The amplitude $\eta^{(\pm)}$may be considered as the order parameters of the superconducting state with d-wave symmetry. Then the order parameter in such a system generally has two components corresponding to $d_{x^{2}-y^{2-}}$ and $d_{x y^{-}}$wave symmetry parts. Let $\eta^{(+)}(\mathbf{R})$ and $\eta^{(-)}(\mathbf{R})$ be the GL order parameters with $d_{x^{2}-y^{2-}}$ and $d_{x y}$-wave symmetry, depending on the spatial variable \mathbf{R}. In the previous paper ${ }^{16}$ we pointed out from symmetry considerations that the GL free energy is allowed to include the mixing term

$$
\begin{equation*}
\gamma_{p}\left[\eta^{(+)}(\mathbf{R})^{*} \eta^{(-)}(\mathbf{R})+\eta^{(+)}(\mathbf{R}) \eta^{(-)}(\mathbf{R})^{*}\right] B_{z}(\mathbf{R}) \tag{2}
\end{equation*}
$$

between the order parameters with $d_{x^{2}-y^{2-}}$ and $d_{x y}$-wave symmetry in the presence of a magnetic field \mathbf{B}. Here, $B_{z}(\mathbf{R})$ is the component of the magnetic field perpendicular to the 2D plane. This term generates a paramagnetic current of the form

$$
\begin{equation*}
-\frac{1}{2} \gamma_{p}\binom{\partial_{y}}{-\partial_{x}}\left[\eta^{(+)}(\mathbf{R})^{*} \eta^{(-)}(\mathbf{R})+\eta^{(+)}(\mathbf{R}) \eta^{(-)}(\mathbf{R})^{*}\right] . \tag{3}
\end{equation*}
$$

It was shown that this paramagnetic current largely cancels the diamagnetic current originating from the motion of the center of mass of the Cooper pairs in the strong-field region and causes an anomalous enhancement of the upper critical field $H_{c 2}$ at low temperatures. ${ }^{16}$ It was demonstrated ${ }^{16}$ that the calculated results for $H_{c 2}$ well explain the anomalous enhancement observed both in overdoped Tl-2201 (Ref. 17) and $\mathrm{Bi}-2201$ compounds. ${ }^{18}$

In this paper we present a derivation of the mixing term given in Eq. (2) from Gorkov's equation for a twodimensional d-wave superconductor with fourfold symmetry. To our knowledge no one has yet derived such a term in the GL equation from Gorkov's equation for unconventional superconductors. This term originates from the internal orbital motion of the pairing electrons under a magnetic field as shown in the following.

We start with the following Gorkov's equation:

$$
\begin{align*}
& {\left[i \omega_{n}-\frac{\hbar^{2}}{2 m}\left(-i \nabla+\frac{e}{\hbar c} \mathbf{A}(\mathbf{r})\right)^{2}\right] G\left(\mathbf{r}, \mathbf{r}^{\prime} ; i \omega_{n}\right)} \\
& \quad+\int d x \Delta(\mathbf{r}, \mathbf{x}) F^{\dagger}\left(\mathbf{x}, \mathbf{r}^{\prime} ; i \omega_{n}\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \tag{4}\\
& {\left[-i \omega_{n}-\frac{\hbar^{2}}{2 m}\left(i \nabla+\frac{e}{\hbar c} \mathbf{A}(\mathbf{r})\right)^{2}\right] F^{\dagger}\left(\mathbf{r}, \mathbf{r}^{\prime} ; i \omega_{n}\right)} \\
& \quad-\int d \mathbf{x} \Delta(\mathbf{r}, \mathbf{x}) G\left(\mathbf{x}, \mathbf{r}^{\prime} ; i \omega_{n}\right)=0 \tag{5}
\end{align*}
$$

Here, the bilocal gap function $\Delta\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ is defined by

$$
\begin{equation*}
\Delta^{*}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=V\left(\mathbf{r}-\mathbf{r}^{\prime}\right) T \sum_{\omega_{n}} F^{\dagger}\left(\mathbf{r}, \mathbf{r}^{\prime} ; i \omega_{n}\right) \tag{6}
\end{equation*}
$$

where $V\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$ is the interaction between electrons causing the d-wave superconductivity. In the following we investigate the linearized GL equation because the mixing term (2) leads to a linear term in the GL equation. The linearized equation for $\Delta^{*}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ is obtained from Eqs. (4)-(6) as follows:

$$
\begin{align*}
\Delta^{*}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)= & V\left(\mathbf{r}-\mathbf{r}^{\prime}\right) T \sum_{\omega_{n}} \int d \mathbf{x} \int d \mathbf{x}^{\prime} \\
& \times G^{N}\left(\mathbf{x}, \mathbf{r} ;-i \omega_{n}\right) G^{N}\left(\mathbf{x}^{\prime}, \mathbf{r}^{\prime} ; i \omega_{n}\right) \Delta^{*}\left(\mathbf{x}, \mathbf{x}^{\prime}\right), \tag{7}
\end{align*}
$$

where $G^{N}\left(\mathbf{x}, \mathbf{r} ; i \omega_{n}\right)$ is the temperature Green function in the normal state. As usual we utilize the quasiclassical approximation for $G^{N}\left(\mathbf{x}, \mathbf{r} ; i \omega_{n}\right)$ in the presence of a magnetic field

$$
\begin{equation*}
G^{N}\left(\mathbf{x}, \mathbf{r} ; i \omega_{n}\right) \simeq G_{0}^{N}\left(\mathbf{x}-\mathbf{r} ; i \omega_{n}\right) \exp \left[i \frac{e}{\hbar c} \int_{r}^{x} d \mathbf{z} \cdot \mathbf{A}(\mathbf{z})\right] \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{0}^{N}\left(\mathbf{x}-\mathbf{r} ; i \omega_{n}\right)=\sum_{\mathbf{k}} \frac{1}{i \omega_{n}-\epsilon_{\mathbf{k}}} \exp [i \mathbf{k} \cdot(\mathbf{x}-\mathbf{r})] \tag{9}
\end{equation*}
$$

with $\epsilon_{\mathbf{k}}=\hbar^{2} \mathbf{k}^{2} / 2 m-\mu$. Under this approximation Eq. (7) is rewritten as

$$
\begin{align*}
\Delta^{*}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \simeq & V\left(\mathbf{r}-\mathbf{r}^{\prime}\right) T \sum_{\omega_{n}} \int d \mathbf{x} \int d \mathbf{x}^{\prime} G_{0}^{N}\left(\mathbf{x}-\mathbf{r} ;-i \omega_{n}\right) G_{0}^{N}\left(\mathbf{x}^{\prime}-\mathbf{r}^{\prime} ; i \omega_{n}\right) \\
& \times \exp \left[-i(\mathbf{x}-\mathbf{r}) \cdot \Pi^{\dagger}\left(\nabla_{\mathbf{r}}\right)-i\left(\mathbf{x}^{\prime}-\mathbf{r}^{\prime}\right) \cdot \Pi^{\dagger}\left(\nabla_{\mathbf{r}^{\prime}}\right)\right] \Delta^{*}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \tag{10}
\end{align*}
$$

with

$$
\begin{equation*}
\Pi^{\dagger}\left(\nabla_{\mathbf{r}}\right)=i \frac{\partial}{\partial \mathbf{r}}-\frac{e}{\hbar c} \mathbf{A}(\mathbf{r}) \tag{11}
\end{equation*}
$$

Let us now introduce the center-of-mass coordinates, \mathbf{R} and \mathbf{X}, and the relative coordinates, \mathbf{u} and \mathbf{s}, as

$$
\begin{gather*}
\mathbf{R}=\left(\mathbf{r}+\mathbf{r}^{\prime}\right) / 2, \quad \mathbf{X}=\left(\mathbf{x}+\mathbf{x}^{\prime}\right) / 2 \\
\mathbf{u}=\mathbf{r}-\mathbf{r}^{\prime}, \quad \mathbf{s}=\mathbf{x}-\mathbf{x}^{\prime}, \tag{12}
\end{gather*}
$$

Assuming that the magnetic field is almost constant in the scale less than the size of the Cooper pairs, we approximate A(r) as

$$
\begin{equation*}
\mathbf{A}(\mathbf{r}) \simeq \mathbf{A}(\mathbf{R})+\frac{1}{2}\left(\mathbf{u} \cdot \nabla_{\mathbf{R}}\right) \mathbf{A}(\mathbf{R}), \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{A}\left(\mathbf{r}^{\prime}\right) \simeq \mathbf{A}(\mathbf{R})-\frac{1}{2}\left(\mathbf{u} \cdot \nabla_{\mathbf{R}}\right) \mathbf{A}(\mathbf{R}) \tag{14}
\end{equation*}
$$

In this approximation the differential operator in Eq. (10) is reduced to

$$
\begin{align*}
&-i(\mathbf{x}-\mathbf{r}) \cdot \Pi^{\dagger}\left(\nabla_{\mathbf{r}}\right)-i\left(\mathbf{x}^{\prime}-\mathbf{r}^{\prime}\right) \cdot \Pi^{\dagger}\left(\nabla_{\mathbf{r}^{\prime}}\right) \\
& \simeq-i(\mathbf{X}-\mathbf{R}) \cdot \hat{\Pi}^{\dagger}\left(\nabla_{\mathbf{R}}\right)+(\mathbf{s}-\mathbf{u}) \cdot \nabla_{\mathbf{u}^{\prime}}+\frac{i e}{2 \hbar c}(\mathbf{s}-\mathbf{u}) \\
& \cdot\left[\mathbf{u} \cdot \nabla_{\mathbf{R}}\right] \mathbf{A}(\mathbf{R}), \tag{15}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{\Pi}^{\dagger}\left(\nabla_{\mathbf{R}}\right) \equiv i \frac{\partial}{\partial \mathbf{R}}-\frac{2 e}{\hbar c} \mathbf{A}(\mathbf{R}) \tag{16}
\end{equation*}
$$

Then we have

$$
\begin{align*}
\Delta^{*}(\mathbf{R}, \mathbf{u})= & V(\mathbf{u}) T \sum_{\omega_{n}} \int d \mathbf{X} \int d \mathbf{s} \sum_{\mathbf{p}} \sum_{\mathbf{q}} \frac{\exp [i(\mathbf{q}+\mathbf{p}) \cdot \mathbf{X}+i(\mathbf{q}-\mathbf{p}) \cdot \mathbf{s} / 2]}{\left(\epsilon_{q}+i \omega_{n}\right)\left(\epsilon_{p}-i \omega_{n}\right)} \\
& \times \exp \left[-i \mathbf{X} \cdot \hat{\Pi}^{\dagger}\left(\nabla_{\mathbf{R}}\right)+\mathbf{s} \cdot \nabla_{\mathbf{r}}+\frac{i e}{2 \hbar c} \mathbf{s} \cdot\left[\mathbf{u} \cdot \nabla_{\mathbf{R}}\right] \mathbf{A}(\mathbf{R})\right] \Delta^{*}(\mathbf{R}, \mathbf{u}) \\
= & V(\mathbf{u}) T \sum_{\omega_{n}} \int d \mathbf{X} \int d \mathbf{s} \sum_{\mathbf{p}} \sum_{\mathbf{q}} \frac{\exp [i(\mathbf{q}+\mathbf{p}) \cdot \mathbf{X}+i(\mathbf{q}-\mathbf{p}) \cdot \mathbf{s} / 2]}{\left(\epsilon_{q}+i \omega_{n}\right)\left(\epsilon_{p}-i \omega_{n}\right)} \\
& \times \exp \left[-i \mathbf{X} \cdot \hat{\Pi}^{\dagger}\left(\nabla_{\mathbf{R}}\right)+\frac{i e}{2 \hbar c} \mathbf{s} \cdot\left[\mathbf{u} \cdot \nabla_{\mathbf{R}}\right] \mathbf{A}(\mathbf{R})\right] \exp \left[-\frac{i e}{4 \hbar c} \mathbf{s} \cdot\left[\mathbf{s} \cdot \nabla_{\mathbf{R}}\right] \mathbf{A}(\mathbf{R})\right] \Delta^{*}(\mathbf{R}, \mathbf{u}+\mathbf{s}) . \tag{17}
\end{align*}
$$

In deriving the last expression in Eq. (17) we used the formula

$$
\exp (\hat{A}+\hat{B})=\exp \hat{A} \exp \hat{B} \exp (-[\hat{A}, \hat{B}] / 2)
$$

and the relation,

$$
\begin{equation*}
\exp \left[\mathbf{s} \cdot \nabla_{\mathbf{u}}\right] \Delta^{*}(\mathbf{R}, \mathbf{u})=\Delta^{*}(\mathbf{R}, \mathbf{u}+\mathbf{s}) \tag{18}
\end{equation*}
$$

The commutator in the above formula is calculated in this case as

$$
\begin{align*}
& {\left[-i \mathbf{X} \cdot \Pi^{\dagger}\left(\nabla_{\mathbf{R}}\right)+\frac{i e}{2 \hbar c} \mathbf{s} \cdot\left[\mathbf{u} \cdot \nabla_{\mathbf{R}}\right] \mathbf{A}(\mathbf{R}), \mathbf{s} \cdot \nabla_{\mathbf{u}}\right]} \\
& =-\frac{i e}{2 \hbar c} \mathbf{s} \cdot\left[\mathbf{s} \cdot \nabla_{\mathbf{R}}\right] \mathbf{A}(\mathbf{R}) . \tag{19}
\end{align*}
$$

Assuming the slow spatial variation, we expand the exponential operator to the second order in $\hat{\Pi}^{\dagger}\left(\nabla_{\mathbf{R}}\right)$ and to the first order in $\nabla_{\mathbf{R}} \mathbf{A}(\mathbf{R})$,

$$
\begin{align*}
\Delta^{*}(\mathbf{R}, \mathbf{u})= & V(\mathbf{u}) T \sum_{\omega_{n}} \int d \mathbf{X} \int d \mathbf{s} \sum_{\mathbf{p}} \sum_{\mathbf{q}} \frac{\exp [i(\mathbf{q}+\mathbf{p}) \cdot \mathbf{X}+i(\mathbf{q}-\mathbf{p}) \cdot \mathbf{s} / 2]}{\left(\epsilon_{\mathbf{q}}+i \omega_{n}\right)\left(\epsilon_{\mathbf{p}}-i \omega_{n}\right)} \\
& \times\left[1-\left[\mathbf{X} \cdot \hat{\Pi}^{\dagger}\left(\nabla_{\mathbf{R}}\right)\right]^{2}+\frac{i e}{2 \hbar c} \mathbf{s} \cdot\left[\mathbf{u} \cdot \nabla_{\mathbf{R}}\right] \mathbf{A}(\mathbf{R})-\frac{i e}{4 \hbar c} \mathbf{s} \cdot\left[\mathbf{s} \cdot \nabla_{\mathbf{R}}\right] \mathbf{A}(\mathbf{R})\right] \Delta^{*}(\mathbf{R}, \mathbf{u}+\mathbf{s}) . \tag{20}
\end{align*}
$$

Let us now introduce the Fourier transformations for the relative coordinates,

$$
\begin{align*}
\Delta(\mathbf{R}, \mathbf{u}) & =\sum_{\mathbf{k}} \Delta(\mathbf{R}, \mathbf{k}) \exp (i \mathbf{k} \cdot \mathbf{u}), \tag{21}\\
V(\mathbf{u}) & =\sum_{\mathbf{k}} V(\mathbf{k}) \exp (i \mathbf{k} \cdot \mathbf{u}) . \tag{22}
\end{align*}
$$

Substituting Eqs. (21) and (22) into Eq. (20), we obtain

$$
\begin{align*}
\Delta^{*}(\mathbf{R}, \mathbf{k})= & \sum_{\mathbf{k}^{\prime}} V\left(\mathbf{k}-\mathbf{k}^{\prime}\right) T \sum_{\omega_{n}} \frac{1}{\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}} \Delta^{*}\left(\mathbf{R}, \mathbf{k}^{\prime}\right)+\sum_{\mathbf{k}^{\prime}} V\left(\mathbf{k}-\mathbf{k}^{\prime}\right) T \sum_{\omega_{n}}\left\{\frac{1}{2 m} \frac{\epsilon_{\mathbf{k}^{\prime}}}{\left(\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}\right)^{2}} \hat{\Pi}^{\dagger}\left(\nabla_{\mathbf{R}}\right)^{2}\right. \\
& \left.-\frac{1}{(2 m)^{2}} \frac{6 \epsilon_{\mathbf{k}^{\prime}}^{2}-2 \omega_{n}^{2}}{\left(\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}\right)^{3}}\left[k_{x}^{\prime 2} \hat{\Pi}_{x}^{\dagger}\left(\nabla_{\mathbf{R}}\right)^{2}+k_{y}^{\prime 2} \hat{\Pi}_{y}^{\dagger}\left(\nabla_{\mathbf{R}}\right)^{2}\right]-\frac{1}{(2 m)^{2}} \frac{3 \epsilon_{\mathbf{k}^{\prime}}^{2}-\omega_{n}^{2}}{\left(\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}\right)^{3}} k_{x}^{\prime} k_{y}^{\prime} \hat{\Pi}_{x}^{\dagger}\left(\nabla_{\mathbf{R}}\right) \hat{\Pi}_{y}^{\dagger}\left(\nabla_{\mathbf{R}}\right)\right\} \Delta^{*}\left(\mathbf{R}, \mathbf{k}^{\prime}\right) \\
& -\sum_{\mathbf{k}^{\prime}} T \sum_{\omega_{n}} \frac{\epsilon_{\mathbf{k}^{\prime}}}{\left(\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}\right)^{2}} \frac{\mathbf{k}^{\prime}}{m}\left[i \nabla_{\mathbf{k}} V\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \nabla_{\mathbf{R}}\right] \mathbf{A}(\mathbf{R}) \Delta^{*}\left(\mathbf{R}, \mathbf{k}^{\prime}\right)-\frac{i}{2 m^{2}} \sum_{\mathbf{k}^{\prime}} V\left(\mathbf{k}-\mathbf{k}^{\prime}\right) T \\
& \times \sum_{\omega_{n}} \frac{1}{\left(\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}\right)^{2}}\left(1-\frac{4 \epsilon_{\mathbf{k}^{\prime}}^{2}}{\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}}\right)\left[k_{x}^{\prime 2} \frac{\partial A_{x}(\mathbf{R})}{\partial R_{x}}+k_{y}^{\prime 2} \frac{\partial A_{y}(\mathbf{R})}{\partial R_{y}}+k_{x}^{\prime} k_{y}^{\prime}\left(\frac{\partial A_{x}(\mathbf{R})}{\partial R_{y}}+\frac{\partial A_{y}(\mathbf{R})}{\partial R_{x}}\right)\right] \Delta^{*}\left(\mathbf{R}, \mathbf{k}^{\prime}\right) . \tag{23}
\end{align*}
$$

Since the system is assumed to have fourfold symmetry about the z axis, the terms proportional to $k_{x}^{\prime} k_{y}^{\prime}$ in the integrand vanishes after the integration by \mathbf{k}^{\prime}. Then Eq. (23) is simplified in the Coulomb gauge, $\nabla_{\mathbf{R}} \cdot \mathbf{A}(\mathbf{R})=0$, as

$$
\begin{align*}
\sum_{\mathbf{k}^{\prime}}\left[\delta_{\mathbf{k}, \mathbf{k}^{\prime}}-V\left(\mathbf{k}-\mathbf{k}^{\prime}\right) T \sum_{\omega_{n}} \frac{1}{\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}}\right] \Delta^{*}\left(\mathbf{R}, \mathbf{k}^{\prime}\right)= & \sum_{\mathbf{k}^{\prime}} V\left(\mathbf{k}-\mathbf{k}^{\prime}\right) T \sum_{\omega_{n}}\left\{\frac{1}{2 m} \frac{\epsilon_{\mathbf{k}^{\prime}}}{\left(\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}\right)^{2}} \hat{\Pi}^{\dagger}\left(\nabla_{\mathbf{R}}\right)^{2}\right. \\
& \left.-\frac{1}{(2 m)^{2}} \frac{6 \epsilon_{\mathbf{k}^{\prime}}^{2}-2 \omega_{n}^{2}}{\left(\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}\right)^{3}}\left(k_{x}^{\prime 2} \hat{\Pi}_{x}^{\dagger}\left(\nabla_{\mathbf{R}}\right)^{2}+k_{y}^{\prime 2} \hat{\Pi}_{y}^{\dagger}\left(\nabla_{\mathbf{R}}\right)^{2}\right)\right\} \Delta^{*}\left(\mathbf{R}, \mathbf{k}^{\prime}\right) \\
& -\sum_{\mathbf{k}^{\prime}} T \sum_{\omega_{n}} \frac{\epsilon_{\mathbf{k}^{\prime}}}{\left(\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}\right)^{2}} \frac{\mathbf{k}^{\prime}}{m}\left[i \nabla_{\mathbf{k}} V\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \nabla_{\mathbf{R}}\right] \mathbf{A}(\mathbf{R}) \Delta^{*}\left(\mathbf{R}, \mathbf{k}^{\prime}\right) . \tag{24}
\end{align*}
$$

Note that the last term on the right-hand side of the above equation is a term that has not yet been considered in previous works. ${ }^{11,12,14}$

To proceed with the calculation we expand the interaction, $V\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$, in terms of the powers of \hat{k}_{α} and \hat{k}_{β}^{\prime} in the following form with fourfold symmetry:

$$
\begin{align*}
V\left(\mathbf{k}-\mathbf{k}^{\prime}\right)= & V_{0}+V_{1}\left(\hat{k}_{x} \hat{k}_{x}^{\prime}+\hat{k}_{y} \hat{k}_{y}^{\prime}\right)+V_{2}^{(+)}\left(\hat{k}_{x}^{2}-\hat{k}_{y}^{2}\right)\left(\hat{k}_{x}^{\prime 2}-\hat{k}_{y}^{\prime 2}\right) \\
& +4 V_{2}^{(-)} \hat{k}_{x} \hat{k}_{y} \hat{k}_{x}^{\prime} \hat{k}_{y}^{\prime} . \tag{25}
\end{align*}
$$

In the case where a pure d-wave symmetry state, $\eta^{(+)}(\mathbf{R})$ or $\eta^{(-)}(\mathbf{R})$, is realized, the term with the coefficient $V_{2}^{(+)}$or $V_{2}^{(-)}$
is the dominant interaction causing the superconductivity. However, we include the bilinear term $V^{(1)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$ $\equiv V_{1}\left(\hat{k}_{x} \hat{k}_{x}^{\prime}+\hat{k}_{y} \hat{k}_{y}^{\prime}\right)$ in Eq. (25). As seen later, this term causes the mixing between the two d-wave symmetry states in the presence of the magnetic field through the last term on the right-hand side of Eq. (24). Noting that

$$
\begin{equation*}
\nabla_{\mathbf{k}} V^{(1)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)=\frac{V_{1}}{k}\binom{\hat{k}_{x}^{\prime} \hat{k}_{y}^{2}-\hat{k}_{y}^{\prime} \hat{k}_{x} \hat{k}_{y}}{\hat{k}_{y}^{\prime} \hat{k}_{x}^{2}-\hat{k}_{x}^{\prime} \hat{k}_{x} \hat{k}_{y}} . \tag{26}
\end{equation*}
$$

we can rewrite the last term on the right-hand side of Eq. (24) as follows:

$$
\begin{align*}
& \sum_{\mathbf{k}^{\prime}} T \sum_{\omega_{n}} \frac{\epsilon_{\mathbf{k}^{\prime}}}{\left(\epsilon_{\mathbf{k}^{\prime}}^{2}+\omega_{n}^{2}\right)^{2}} \frac{\mathbf{k}^{\prime}}{m}\left[i \nabla_{\mathbf{k}} V\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \nabla_{\mathbf{R}}\right] \mathbf{A}(\mathbf{R}) \Delta^{*}\left(\mathbf{R}, \mathbf{k}^{\prime}\right) \\
& \simeq T \sum_{\omega_{n}} \int d \epsilon \frac{d N(\epsilon)}{d \epsilon} \frac{1}{\epsilon^{2}+\omega_{n}^{2}} \frac{V_{1}}{2 m k_{F}^{2}}\left\{\frac{1}{4} \eta^{(+)}(\mathbf{R})^{*}\left(\frac{\partial A_{x}(\mathbf{R})}{\partial R_{x}} \hat{k}_{x}^{2}-\frac{\partial A_{y}(\mathbf{R})}{\partial R_{y}} \hat{k}_{y}^{2}\right)-\frac{i}{4} \eta^{(-)}(\mathbf{R})\right. \\
&\left.\times\left(\frac{\partial A_{y}(\mathbf{R})}{\partial R_{x}} \hat{k}_{y}^{2}+\frac{\partial A_{x}(\mathbf{R})}{\partial R_{y}} \hat{k}_{x}^{2}\right)+\frac{i}{4} \eta^{(+)}(\mathbf{R})\left(\frac{\partial A_{y}(\mathbf{R})}{\partial R_{x}}-\frac{\partial A_{x}(\mathbf{R})}{\partial R_{y}}\right) k_{x} k_{y}\right\} \tag{27}
\end{align*}
$$

where $N(\epsilon)$ is the density of states. Performing the summation by \mathbf{k}^{\prime} in Eq. (24) and projecting it on the basis functions, ($\hat{k}_{x}^{2}-\hat{k}_{y}^{2}$) and $\hat{k}_{x} \hat{k}_{y}$, we find the following coupled equations for the order parameters, $\eta^{(+)}(\mathbf{R})$ and $\eta^{(-)}(\mathbf{R})$:

$$
\begin{align*}
{[1-} & \left.\frac{1}{2} V_{2}^{(+)} N(0) \ln \frac{2 \gamma \hbar \omega_{D}}{\pi T}\right] \eta^{(+)}(\mathbf{R})^{*} \\
= & -\frac{21 \zeta(3)}{128 \pi^{2} T^{2}} V_{2}^{(+)} N(0) \hat{\Pi}^{\dagger}\left(\nabla_{\mathbf{R}}\right)^{2} \eta^{(+)}(\mathbf{R})^{*} \\
& +\frac{V_{1}}{8 m k_{F}^{2}} \int_{-\omega_{D}}^{\omega_{D}} d \epsilon \frac{d N(\epsilon)}{d \epsilon} \frac{1}{2 \epsilon} \tanh \left(\frac{\epsilon}{2 T}\right) \eta^{(-)} \\
& \times(\mathbf{R})^{*} B_{z}(\mathbf{R}), \tag{28}\\
{[1-} & \left.\frac{1}{2} V_{2}^{(-)} N(0) \ln \frac{2 \gamma \hbar \omega_{D}}{\pi T}\right] \eta^{(-)}(\mathbf{R})^{*} \\
= & -\frac{21 \zeta(3)}{128 \pi^{2} T^{2}} V_{2}^{(-)} N(0) \hat{\Pi}^{\dagger}\left(\nabla_{\mathbf{R}}\right)^{2} \eta^{(-)}(\mathbf{R})^{*} \\
& +\frac{V_{1}}{8 m k_{F}^{2}} \int_{-\omega_{D}}^{\omega_{D}} d \epsilon \frac{d N(\epsilon)}{d \epsilon} \frac{1}{2 \epsilon} \tanh \left(\frac{\epsilon}{2 T}\right) \eta^{(+)} \\
& \times(\mathbf{R})^{*} B_{z}(\mathbf{R}), \tag{29}
\end{align*}
$$

where $B_{z}=\left(\partial A_{y} / \partial R_{x}-\partial A_{x} / \partial R_{y}\right), \omega_{D}$ is the cutoff energy, and γ and $\zeta(n)$ are, respectively, the Euler number and the ζ function. The last terms on the right-hand sides of Eqs. (28) and (29) indicate that the GL free energy should contain a term of the form
$\gamma_{p}\left(\eta^{(+)}(\mathbf{R})^{*} \eta^{(-)}(\mathbf{R})+\eta^{(+)}(\mathbf{R}) \eta^{(-)}(\mathbf{R})^{*}\right) B_{z}(\mathbf{R})$,
where

$$
\begin{equation*}
\gamma_{p} \propto \frac{V_{1}}{8 m k_{F}^{2}} \int_{-\omega_{D}}^{\omega_{D}} d \epsilon \frac{d N(\epsilon)}{d \epsilon} \frac{1}{2 \epsilon} \tanh \left(\frac{\epsilon}{2 T}\right) . \tag{31}
\end{equation*}
$$

It is thus concluded that the order parameters with $d_{x^{2}-y^{2-}}$ and $d_{x y}$-wave symmetry are mixed under a magnetic field perpendicular to the 2 D plane. As seen from the above derivation, the mixing term has its origin in the freedom of the relative motion of the pairing electrons. To understand the origin we introduce the transformation, $\eta^{(\pm)}(\mathbf{R}) \rightarrow \eta_{ \pm 2}(\mathbf{R})$, defined by

$$
\left\{\begin{array}{l}
\eta^{(+)}(\mathbf{R})=\eta_{2}(\mathbf{R})+\eta_{-2}(\mathbf{R}) \tag{32}\\
\eta^{(-)}(\mathbf{R})=\eta_{2}(\mathbf{R})-\eta_{-2}(\mathbf{R})^{.}
\end{array}\right.
$$

Note that the gap function defined in Eq. (1) is rewritten in terms of these new parameters as

$$
\begin{equation*}
\Delta(\mathbf{R}, \mathbf{k})=\eta_{2}(\mathbf{R}) \exp \left(2 i \theta_{k}\right)+\eta_{-2}(\mathbf{R}) \exp \left(-2 i \theta_{k}\right) \tag{33}
\end{equation*}
$$

Thus the parameters, $\eta_{ \pm 2}(\mathbf{R})$, are understood to be the order parameters corresponding to the states with orbital angular momentum $L_{z}= \pm 2$. The mixing term in Eq. (30) is then expressed as

$$
\begin{equation*}
\gamma_{p}\left(\left|\eta_{2}(\mathbf{R})\right|^{2}-\left|\eta_{-2}(\mathbf{R})\right|^{2}\right) B_{z}(\mathbf{R}) \tag{34}
\end{equation*}
$$

indicating that the magnetic field stabilizes the state with orbital angular momentum $L_{z}=2\left(\gamma_{p}<0\right)$. From these observations one may conclude that the mixing term arises from the "orbital Zeeman effect" for the pairing electrons with finite orbital angular momentum.

Since the coefficient γ_{p} contains a factor $d N(\epsilon) / d \epsilon$, the mixing term is expected to play an important role in a d-wave superconductor with an narrow band. The upper critical field $H_{c 2}$ is calculated in the presence of the mixing term as

$$
\begin{align*}
H_{c 2}= & \frac{\phi_{0}}{2 \pi \xi^{(+)}(T)^{2}} \frac{1}{2\left(1-\nu_{p}\right)}\left\{1-\left[\frac{\xi^{(+)}(T)}{\xi^{(-)}(T)}\right]^{2}\right. \\
& \left. \pm \sqrt{\left(1+\left[\frac{\xi^{(+)}(T)}{\xi^{(-)}(T)}\right]^{2}\right)^{2}-4 \nu_{p}\left[\frac{\xi^{(+)}(T)}{\xi^{(-)}(T)}\right]^{2}}\right\} \tag{35}
\end{align*}
$$

for $\nu_{p} \neq 1$ and

$$
\begin{equation*}
H_{c 2}=\frac{\phi_{0}}{2 \pi \xi^{(-) 2}(T)} \frac{1}{\left|1-\left[\xi^{(+)}(T) / \xi^{(-)}(T)\right]^{2}\right|} \tag{36}
\end{equation*}
$$

for $\nu_{p}=1$, where $\xi^{(+)}(T)\left[\xi^{(-)}(T)\right]$ is the coherence length of the state with $d_{x^{2}-y^{2}}\left(d_{x y}\right)$ wave symmetry, ν_{p} is a constant proportional to γ_{p}^{2} and ϕ_{0} is the unit flux $(h c / 2 e)$. As seen in
the above equations an anomalous enhancement appears in the temperature dependence of $H_{c 2}$ when $\xi^{(+)}(T) \sim \xi^{(-)}(T)$ in the case of $\nu_{p} \sim 1$. As discussed in the previous paper ${ }^{16}$ the enhancement arises from the cancellation of the increase in the kinetic energy under a magnetic field by the paramag-
netic energy originating from the internal orbital motion of the pairing electrons.

The authors would like to thank H. Matsumoto and S. Takahashi for discussions.
${ }^{1}$ See, for example, D. J. Scalapino, Phys. Rep. 250, 329 (1995).
${ }^{2}$ Y. Kitaoka, S. Hiramatsu, T. Kondo, and K. Asayama, J. Phys. Soc. Jpn. 57, 31 (1988).
${ }^{3}$ T. Imai, T. Shimizu, T. Tsuda, H. Yasuoka, T. Takabatake, Y. Nakazawa, and M. Ishikawa, J. Phys. Soc. Jpn. 57, 1771 (1988).
${ }^{4}$ W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, Phys. Rev. Lett. 70, 3999 (1993).
${ }^{5}$ Z.-X. Shen, D. S. Dessau, B. O. Wells, D. M. King, W. E. Spicer, A. J. Arko, D. Marshall, L. W. Lombardo, A. Kapitulnik, P. Dickinson, S. Doniach, J. DiCardo, A. G. Loeser, and C. H. Park, Phys. Rev. Lett. 70, 1553 (1993).
${ }^{6}$ D. A. Wollman, D. J. Van Harlingen, W. C. Lee, D. M. Ginsberg, and A. J. Leggett, Phys. Rev. Lett. 71, 2134 (1993).
${ }^{7}$ D. A. Wollman, D. J. Van Harlingen, J. Giapintzakis, and D. M. Ginsberg, Phys. Rev. Lett. 74, 797 (1995).
${ }^{8}$ C. C. Tsuei, J. R. Kirtley, C. C. Chi, L. S. Yu-Jahnes, A. Gupta, T. Shaw, J. Z. Sun, and M. B. Ketchen, Phys. Rev. Lett. 73, 593 (1994).
${ }^{9}$ S. Kashiwaya, Y. Tanaka, M. Koyanagi, H. Takashima, and K.

Kajimura, Phys. Rev. B 51, 1350 (1995).
${ }^{10}$ A. Maeda, Y. Iino, T. Hanaguri, N. Motohira, K. Kishio, and T. Fikase, Phys. Rev. Lett. 74, 1202 (1995).
${ }^{11}$ R. Joynt, Phys. Rev. B 41, 4271 (1990).
${ }^{12}$ P. I. Soininen, C. Kallin, and A. J. Berlinsky, Phys. Rev. B 50, 13853 (1994).
${ }^{13}$ M. Sigrist, D. B. Bailey, and R. B. Laughlin, Phys. Rev. Lett. 74, 3249 (1995).
${ }^{14}$ Y. Ren, J. Xu, and C. S. Ting, Phys. Rev. Lett. 74, 3680 (1995).
${ }^{15}$ K. Takanaka and K. Kuboya, Phys. Rev. Lett. 75, 323 (1995).
${ }^{16} \mathrm{~T}$. Koyama and M. Tachiki, Physica C (to be published).
${ }^{17}$ A. P. Mackenzie, S. R. Julian, G. G. Lonzarich, A. Carrington, S. D. Hughes, R. S. Liu, and D. C. Sinclair, Phys. Rev. Lett. 71, 1238 (1993); A. P. Mackenzie, S. R. Julian, G. A. Carrington, G. Lonzarich, D. J. C. Walker, J. R. Cooper, and D. C. Sinclair, Physica C 235-240, 233 (1994).
${ }^{18}$ M. S. Osofsky, R. J. Soulen, S. A. Wolf, J. M. Broto, H. Rakoto, J. C. Ousset, G. Coffe, S. Askenazy, P. Pari, I. Bozovic, J. N. Eckenstein, and G. F. Virshup, Phys. Rev. Lett. 71, 2315 (1995).

