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Mixing of the order parameters with d,2_,2- and d,,-wave symmetry ind-wave superconductors

T. Koyama and M. Tachiki
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-77, Japan
(Received 28 August 1995

We derive the Ginzburg-Landau equation for two-dimensi@halave superconductors with fourfold sym-
metry. The twod-wave components of the order parameter vdgh > andd,, symmetry are mixed by the
component of a magnetic field perpendicular to the two-dimensional plane. The mixing of the two components
causes a significant paramagnetic effect in the strong-field region.

Recently there has been a lot of controversy concerning 1 dy

the symmetry of the order parameter in cuprate — 3 7p( P )[77(+)(R)* 7R+ 7 (R) 7 (R)* 1.
superconductors.Some of the recent experiments for the * &)
superconducting state in these compounds have been inter-

preted in terms ofi-wave symmetry~*° To investigate the |t was shown that this paramagnetic current largely cancels
properties of the mixed state in cuprate superconductors phehe diamagnetic current originating from the motion of the
nomenological theories based on the Ginzburg-Lan@®lU  center of mass of the Cooper pairs in the strong-field region
approach have been developed for two-dimensid@8l)  and causes an anomalous enhancement of the upper critical
d-wave superconductors with four-fold symmetty:°Most  field H,, at low temperature®® It was demonstratédl that

of the theories proposed so far assume the order paramet@fe calculated results for ., well explain the anomalous
having dominantlyd,2_2-wave symmetry and mixing with  enhancement observed both in overdoped TI-2@R4f. 17

the s-wave component in the mixed state. The possibilityand Bi-2201 compounds.

that the twod-wave componentéd,. 2 andd,,) are mixed In this paper we present a derivation of the mixing term
under a magnetic field has not yet been fully considered. In given in Eq. (2) from Gorkov's equation for a two-
previous papef we showed that the mixing between the two dimensionab-wave superconductor with fourfold symmetry.
d-wave components cause a significant paramagnetic effeqb our knowledge no one has yet derived such a term in the
in the strong-field region and brings about an anomalougL equation from Gorkov’s equation for unconventional su-
enhancement of the upper critical field. In this paper we eXperconductors. This term originates from the internal orbital
amine the derivation of the GL equation in 2Dwave su-  motion of the pairing electrons under a magnetic field as
perconductors and show that the order parameter witBhown in the following.

dy2_y2-wave symmetry can mix with the component with  We start with the following Gorkov’s equation:
d,y-wave symmetry in the presence of a magnetic field.

In 2D d-wave superconductors with fourfold symmetry 52 e 2
about thez axis the gap function is expanded in terms of the iw,— >m ( —iV+ 7c A(r)) G(r,r';iowp)
basis functions havingd,2 .- andd,,-wave symmetry as ¢
A= P (KE=K2) +2i 7 koky (1) +f dx A(r,)FT(x,r";iw)=8r—r"), (4

wherek, =cosf, andk,=sing,, and 4" is the complex am-
plitude (notei?=—1). The amplitude’™ may be considered

as the order parameters of the superconducting state with
d-wave symmetry. Then the order parameter in such a sys-
tem generally has two components corresponding to .

d,2_,2- and d,,- wave symmetry parts. Le/"(R) and _f dx A(r,x)G(x,r";iwy) =0. ®)
7 (R) be the GL order parameters witt,2_,>- and

d,y-wave symmetry, depending on the spatial varid®lén  Here, the bilocal gap functioa(r,r’) is defined by

the previous papét we pointed out from symmetry consid-

erations that the GL free energy is allowed to include the

mixing term A*(r,r)=V(r=r)T2 F(r,r i), (6)

(F)(RY* 5(7) (+) )(R)*

vl (RT 7RI 7 (R 7 HRITIBAR), (2 whereV(r—r') is the interaction between electrons causing
between the order parameters with._,.- and d,,-wave the d-wave superconductivity. In the following we investi-
symmetry in the presence of a magnetic fiBldHere,B,(R)  gate the linearized GL equation because the mixing t&m
is the component of the magnetic field perpendicular to théeads to a linear term in the GL equation. The linearized
2D plane. This term generates a paramagnetic current of thequation forA*(r,r’) is obtained from Eqs(4)—(6) as fol-
form lows:

2

H h ; € ? T re
_"”n_ﬁ |V+%A(r) Fi'(r,r’;iowp)

0163-1829/96/5%)/26625)/$06.00 53 2662 © 1996 The American Physical Society



23 MIXING OF THE ORDER PARAMETERS WITHd,2_y2- AND . .. 2663

A*(r,r")y=V(r—r )TE dxj dx’ GN(x,r;iwn)ng(x—r;iwn)exr{i ﬁ—ec fxdz.A(z) ,
(8)

XGN(X, 1 —iwn) GN(X' 1 Twn) A* (x,X'), where
) ") GHx-riiwg =3
whereG™(x,r;i w,) is the temperature Green function in the k

normal state. As usual we utilize the quasiclassical approxiwith e,=#%k%2m— w. Under this apprOX|mat|on Eq7) is
mation forGN(x,r;iw,) in the presence of a magnetic field rewritten as

ex;{ik-(x—r)], (9

iw,— €

A*(r,r)=V(r—r")T>, dxf dx’ Gy(x—r;—iwn)GY(X' —r1";iw,)

xexd —i(x—r)-IN(V,)—i(x'—r")-TIT(V, ) ]JA* (r,r"), (10)
T
with A(r")=A(R) - 1(u-VR)A(R). (14
d In this approximation the differential operator in H40) is
ot 2 _ =
IV, =i ar A(r) (1D reduced to
Let us now introduce the center-of-mass coordinakes, —i(x=r)-I(V)—i(x'=r")- 1" (V,))

and X, and the relative coordinates,ands, as

xR TIT ~ e
R=(r+r')/2, X=(x+x")2 = TIX=RI-ITVR)IF(s7W)- Vit 5570 (s41)

u=r—r’, s=x—x', (12 [u-Vg]A(R), (15)

Assuming that the magnetic field is almost constant in théVhere
scale less than the size of the Cooper pairs, we approximate

. J 2e
A(r) as II'(Vg) =i R 7e A(R). (16)

A(r)=A(R)+ 3(u-VR)A(R), (13)  Then we have

e + X+ §2
A*(R,u)=V(U)TwE de d E 2 XF{I(jq_FF:Ln)(e:)(qI wpn; :

2fc

=V(u)TY dxf ds3 > S1(a+p) X*1(G-p) 92

(qtiwy)(ep—iwy)

Xexp{—lx M(Ve)+sV,+=—s [u-VR]A(R)}A*(R,u)

Xex;{—ixof{T(VR)JrleeCs-[u-VR]A(R) ex;{ 4|; s-[s VR]A(R) |A* (R,u+5). (17)

In deriving the last expression in E¢L7) we used the for- The commutator in the above formula is calculated in this
mula case as

exp(A+B)=expA expB exp—[A,B]/2) LiX (V) + ie s (U VJAR).SV,
and the relation,

ie
exgs V, JA* (R,u)=A*(R,u+s). (18) =~ 275¢c 5[5 VerIA(R). (19
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Assuming the slow spatial variation, we expand the exponential operator to the second Cﬁ&@‘d’hand to the first order
in VRA(R),

exdi(q+p)-X+i(q—p)-s2]
(eq+iwy)(ep—iwy)

A*(R,u)=V(W)TD dxf ds>. >
wn p q

x| 1-[X- HT(VR)]2+ =S [u-VRIAR) — 5o e - [ VRIARR) |A*(Ryu+s). (20)

Let us now introduce the Fourier transformations for the relative coordinates,

A(R,u):; A(R,K)expik-u), (21)
V(u):; V(k)exp(ik-u). (22)
Substituting Egs(21) and (22) into Eqg. (20), we obtain

'Y
(V)2

5 A*(R,k") +ZV(k k' TE[ !

2m( €+ n)2

A*(RK)=2, V(k—k)T,
k' wp

€/ w?

1 GEK'_Z ; 127yt 121yt 1 365'_ ; T ot * ’
- G2 @ n)3[k 1T (Vr)?+kj H(VR)Z] o (&1 ) kayHX(VR)Hy(VR) A*(R,K")
kl
-2 T (E )2 — [V V(k—K)- VRIA(R)A* (RK') =~ 5 2v<k KT
k' ®n k' T @n
462,
‘s 1 2)2(1_ ol { P AAR) L IAR) a/;XF(aR) oA(R) SR 29

on (ek,—‘rwn ek,+wn é’RX y é’Ry Xy y (?RX

Since the system is assumed to have fourfold symmetry about thés, the terms proportional ﬂq’(k)’, in the integrand
vanishes after the integration ly. Then Eq.(23) is simplified in the Coulomb gaug&g-A(R)=0, as

€k’ il 2
2m (& + wl)? IT'(Vg)

n

S|A*(RK')= Z V(k—k’ )TE [

2| Sk —V(k—k)HTY

k' wn €y wn

1 6e—207 .
“om? @ ; )3(k’2HT(vR)2 k;,zl'[;(VR)z)}A*(R,k’)
k!
k!
2T T [IVRV(K=K")- VRIARIA* (R K'). (24)

2 22
k' wp ( k/ n)

Note that the last term on the right-hand side of the abovés the dominant interaction causing the superconductivity.

equation is a term that has not yet been considered in prevHowever we include the bilinear termv®(k—k")

ous works'H214 =V, (K, k +k ky) in Eq. (25). As seen later, this term causes
To proceed with the calculation we expand the interactionthe mixing between the twd-wave symmetry states in the

V(k—k"), in terms of the powers &, andk’ in the follow-  presence of the magnetic field through the last term on the

ing form with fourfold symmetry: right-hand side of Eq(24). Noting that
V(k—k")=Vo+ Vi (kek} +k k) + V5 (K2~ k2) (ki 2—k}?) v, [kik2— Kk K
A ViV (k—k')= = (§ #Ay). (26)
+aVy Rk ik (25) kL kyks =Kk,

In the case where a putewave symmetry state; "/(R) or ~ we can rewrite the last term on the right-hand side of Eq.
77(R), is realized, the term with the coefficievit™ or V5~ (24) as follows:
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!

SIVV(k=K)- VRIARIA* (RK')

2T

2 2\2
k' Wp (Ek/ n)

"’TE

JN© 1 V(L *<¢9AX(R)A IA(R) - 2) -
de €*+ow- 2m|é[ (R) IRy k= dRy Ky 3" (R)

IAYR) ~, JA(R) ~,| i IAy(R)  JA(R)
— () Y
X( R, TR, KT g (R TR T R, @7
|
whereN(e) is the density of states. Performing the summa- 7M(R)=7(R) + 7_»(R)
tion byk’ in Eg. (24) and projecting it on the basis functions, 7 (R)= 75(R) = 7_»(R)’ (32

(k2— k?) andk,k, , we find the foIIowm? coupled equations
(R)

for the order parameters;” (R) and 7 Note that the gap function defined in Eq) is rewritten in

terms of these new parameters as

[1 ; (“N(O)In 7 M(R)*
A(R,k) = 172(R)exp(2i ) + n_(R)exp(— 2i 6y), (33
_ 2B N (V)2 (R
= 128,272 V2 (OIT'(Vr)*n ™ (R)

Thus the parameters;. ,(R), are understood to be the order
V, ©p dN(e) 1 € parameters corresponding to the states with orbital angular
etan"( ) ) momentumL,=*2. The mixing term in Eq(30) is then

+— de ——
Bmic ~“D de 2 2T expressed as
X(R)*B4R), (28)
Yol 72(R)*=[7-2(R)*)B,(R), (34
1 2vhop|
{1— > V5IN(0)In (R)*
indicating that the magnetic field stabilizes the state with
21(3) ) + 2 (—)iovk orbital angular momenturh,= 2(y,<0). From these obser-
~ 2a.272 V2 NOIT(VR)“7 (R) vations one may conclude that the mixing term arises from
the “orbital Zeeman effect” for the pairing electrons with
Vq @p dN(e) 1 €l 4 finite orbital angular momentum.
+ smi€ J_., de 26t o1/ 7 Since the coefficienty, contains a factodN(e)/de, the

mixing term is expected to play an important role in a
X(R)*B4R), (29 d-wave superconductor with an narrow band. The upper

_ critical field H, is calculated in the presence of the mixing
where B,= (dA,/IR,— dA/IR,), wp is the cutoff energy, term as

andy and{(n) are, respectively, the Euler number and the
function. The last terms on the right-hand sides of Eg8)
and (29) indicate that the GL free energy should contain a b0 1 (T 2
term of the form ( —L }

e o mg (T2 2=y | €M)

Yo(7 P (R* 7 R+ 7 (R) 7 T(RI*)BLR), (30 \/ £(T) 2)2 FH)(T)H

/| 14| == | | —4vy|o=—| | (35
where em | TMlEm) | ®

op dN(e) 1 € for »,#1 and
" s—kg de 2¢®Mz7) GV

It is thus concluded that the order parameters with - oo b0 1 36
and d,,-wave symmetry are mixed under a magnetic field 02_2775(—>2(T) |1—[§(+)(T)/§<‘)(T)]Z| (36)

perpendicular to the 2D plane. As seen from the above deri-

vation, the mixing term has its origin in the freedom of the

relative motion of the pairing electrons. To understand thefor y,=1, where£*)(T) [£7(T)] is the coherence length of
origin we introduce the transformation;™ (R)—n5(R), the state Wltmxz,yz (dxy)wave symmetryy, is a constant

defined by proportional tpr and ¢y is the unit flux @c/Ze) As seenin
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the above equations an anomalous enhancement appearsnigtic energy originating from the internal orbital motion of
the temperature dependenceryf, when&™(T)~&(T) in  the pairing electrons.

the case ofy,~1. As discussed in the previous paPethe

enhancement arises from the cancellation of the increase in The authors would like to thank H. Matsumoto and S.
the kinetic energy under a magnetic field by the paramagTakahashi for discussions.
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