

Preparation of Pyrochlore Ca2Ti2O6 by Metal-Organic Chemical Vapor Deposition

著者	Sato Mitsutaka, Tu Rong, Goto Takashi
journal or	Materials Transactions
publication title	
volume	47
number	10
page range	2603-2605
year	2006
URL	http://hdl.handle.net/10097/52363

Preparation of Pyrochlore Ca₂Ti₂O₆ by Metal-Organic Chemical Vapor Deposition

Mitsutaka Sato¹, Rong Tu² and Takashi Goto²

¹Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan ²Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Ca-Ti-O films were prepared by metal-organic chemical vapor deposition (MOCVD) using Ca(dpm)₂ and Ti(O-i-Pr)₂(dpm)₂ precursors, and the effects of substrate temperature (T_{sub}) and Ca/Ti ratio ($R_{Ca/Ti}$) on the crystal structure and morphology were studied. Ca-Ti-O films consisting of pyrochlore Ca₂Ti₂O₆ and perovskite CaTiO₃ phase were obtained at $T_{sub} = 1073$ K and $0.35 < R_{Ca/Ti} < 1$. The content of pyrochlore $Ca_2Ti_2O_6$ increased with decreasing $R_{Ca/Ti}$. Pyrochlore $Ca_2Ti_2O_6$ almost in a single phase was obtained at $R_{Ca/Ti} = 0.46$. The morphology of pyrochlore Ca₂Ti₂O₆ was agglomerated fine grains about 50 nm in diameter having a columnar texture. [doi:10.2320/matertrans.47.2603]

(Received June 27, 2006; Accepted August 25, 2006; Published October 15, 2006)

Keywords: metal-organic chemical vapor deposition, calcium titanate, pyrochlore, microstructure

Introduction 1.

Since a Ca-Ti-O system contains many useful materials, so many studies on the phase diagram and crystal structure of calcium titanates have been reported.¹⁾ Perovskite, CaTiO₃, and several compounds such as Ca₄Ti₃O₁₀ and Ca₃Ti₂O₇ have been known as stable phases in the Ca-Ti-O system. Savenko and Sakharov reported a cubic phase of Ca₂Ti₅O₁₂ having a lattice parameter of 0.862 nm.²⁾ They prepared this compound by thermal decomposition of mixed hydroxides of Ti and Ca at 1023 K. This compound partially transformed to perovskite CaTiO₃ and rutile TiO₂ at 1273 K, and completely transformed at 1373 K. Ball and White re-indexed the XRD data by Savenko and Sakharov, and concluded that the metastable phase should be pyrochlore Ca₂Ti₂O₆ having a lattice parameter of 0.995 nm.³⁾ Since then, no paper on the preparation of pyrochlore Ca2Ti2O6 has been published.

Pyrochlore has a general composition formula of A₂B₂-X₆Y, where A and B are metals, and X and Y are O, OH or F. Since pyrochlore oxides have unique properties such as giant magnetoresistance (GMR) of Tl₂Mn₂O₇,⁴⁾ metal-insulator transition of $Tl_2Ru_2O_{7-\delta}^{5)}$ and anomalous Hall effect of Mo system pyrochlore,⁶⁾ pyrochlore Ca₂Ti₂O₆ would also have interesting properties. However, the thermal decomposition process can prepare only a powder form of pyrochlore $Ca_2Ti_2O_6$, and pyrochlore $Ca_2Ti_2O_6$ bodies can not be obtained by sintering due to the transformation to perovskite.

We have been studying metal-organic chemical vapor deposition (MOCVD) of Ca-Ti-O system, and firstly prepared pyrochlore Ca₂Ti₂O₆. In this paper, the effects of substrate temperature (T_{sub}) and Ca/Ti ratio $(R_{Ca/Ti})$ on the formation of pyrochlore Ca₂Ti₂O₆ were reported.

Experimental Procedures 2.

A vertical cold-wall type CVD apparatus was used to prepare Ca-Ti-O films. Source precursors of Ca(dpm)₂ (bisdipivaloylmethanato-calcium) and Ti(O-i-Pr)₂(dpm)₂ (bisisopropoxy-bis-dipivaloylmethanato-titanium) powders were heated at 523 to 573 and 393 to 453 K, respectively. The

Precursor Temperature, I_{prec}	
Ca(dpm) ₂	: 323–573 K
Ti(OiPr) ₂ (dnm) ₂	· 193-453 K

Table 1 Deposition condition of Ca-Ti-O film.

Ca(dpm) ₂	: 323–573 K
$Ti(OiPr)_2(dpm)_2$: 193–453 K
Total gas flow rate, FR _{tot}	: $3.33 \times 10^{-6} \text{m}^3 \text{s}^{-1}$
Carrier Gas	: Ar
Ca(dpm) ₂	: $0.83 \times 10^{-6} \text{m}^3 \text{s}^{-1}$
$Ti(OiPr)_2(dpm)_2$: $0.83 \times 10^{-6} \text{m}^3 \text{s}^{-1}$
O_2 gas glow rate, FR_{O_2}	: $1.2 \times 10^{-6} \mathrm{m^3 s^{-1}}$
Total pressure, P_{tot}	: 0.8 kPa
Deposition temperature, T_{dep}	: 873–1073 K
Deposition time	: 0.3–0.9 ks
Substrate	: fused quartz glass

source vapors were carried into the CVD reactor with Ar gas. O₂ gas was separately introduced by using a double tube nozzle, and mixed with the precursor vapors above a substrate holder. The total gas flow rate ($FR_{tot} = FR_{Ar} + FR_{O2} + FR_{Ar} + FR_{O2} + FR_{Ar} + FR_$ $FR_{\text{source vapor}}$) was fixed at $3.33 \times 10^{-6} \text{ m}^3 \text{ s}^{-1}$. The total pressure (P_{tot}) in the CVD reactor was kept at 0.8 kPa, and the substrate temperature (T_{sub}) was changed from 873 to 1073 K. Detailed experimental set up and the experimental procedure were reported elsewhere.⁷⁾ The deposition conditions are summarized in Table 1. Fused quartz glass plates $(10 \times 15 \times 0.5 \text{ mm})$ were used as substrates. The crystal structure was identified by X-ray diffraction (XRD). The microstructure was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

3. **Results and Discussion**

Figure 1 shows that the XRD patterns of the Ca-Ti-O films prepared at $T_{sub} = 1073$ K and $P_{tot} = 0.8$ kPa. The Ca-Ti-O films consisted of perovskite CaTiO₃, pyrochlore Ca₂Ti₂O₆ and anatase TiO₂. A small amount of Ca₂Ti₂O₆ phase was detected at $R_{Ca/Ti} = 0.95$ (Fig. 1(c)), and the intensity of $Ca_2Ti_2O_6$ increased with decreasing $R_{Ca/Ti}$, and the Ca_2 - Ti_2O_6 phase became as a main phase at $R_{Ca/Ti} = 0.34$ (Fig. 1(a)). Pyrochlore Ca2Ti2O6 is a face-centered cubic structure whose lattice parameter could be 0.9953 nm.³⁾ The Ca-Ti-O film showed in Fig. 1(a) was identified as a mixture of CaTiO₃, Ca₂Ti₂O₆ and a small amount of anatase TiO₂. The lattice parameter of Ca₂Ti₂O₆ was calculated as a = 0.999 nm that was close to that of JCPDS data of pyrochlore Ca₂Ti₂O₆.³⁾ Ca(OH)₂ peaks in Fig. 1(b) must be formed by the reaction of CaO and moisture in air after deposition. Mixed phases of CaTiO₃, anatase TiO₂ and/or CaO were obtained but no Ca₂Ti₂O₆ phase was identified at $T_{sub} = 873$ and 973 K.

Figure 2 shows the electron diffraction pattern of the Ca-Ti-O film prepared at $T_{sub} = 1073$ K, $P_{tot} = 0.8$ kPa and $R_{Ca/Ti} = 0.34$. The film was mainly Ca₂Ti₂O₆ where the incident zone axis was [001] and every electron diffraction spots were indexed as pyrochlore Ca₂Ti₂O₆.

Figure 3 shows the surface and cross-sectional morphology of the Ca-Ti-O film prepared at $T_{sub} = 1073$ K, $P_{tot} = 0.8$ kPa and $R_{Ca/Ti} = 0.34$. The film had a columnar texture as shown in Fig. 3(b). The surface had a granular micro-

Ca₂Ti₂O₆
CaTiO₃
TiO₂ (anatase)

× Ca(OH)₂

800

Fig. 1 XRD patterns of Ca-Ti-O films prepared at $T_{sub} = 1073$ K and $P_{tot} = 0.8$ kPa. (a) $R_{Ca/Ti} = 0.34$, (b) $R_{Ca/Ti} = 0.66$ and (c) $R_{Ca/Ti} = 0.95$.

40

50°

2θ (CuKα)

60°

70°

80°

structure with 300 nm in diameter, and the agglomerated grains consisted of smaller grains about 50 nm in diameter (Fig. 3(a)).

Figure 4 shows the relationship between $R_{\text{Ca/Ti}}$ and the fraction of Ca₂Ti₂O₆ phase (F) in the Ca-Ti-O films prepared at $T_{\text{sub}} = 1073$ K and $P_{\text{tot}} = 0.8$ kPa. The fraction of pyrochlore Ca₂Ti₂O₆ phase can be calculated from eq. (1).

$$F = \frac{I_{Ca_2 Ti_2 O_6}}{I_{Ca_2 Ti_2 O_6} + I_{Ca TiO_3} + I_{TiO_2}}$$
(1)

where, *I* is the sum of all peaks for each phase in the Ca-Ti-O films. The Ca₂Ti₂O₆ phase formed in a Ti-rich region of $0.3 < R_{Ca/Ti} < 1$. The fraction of Ca₂Ti₂O₆ phase increased with decreasing $R_{Ca/Ti}$, and the content of Ca₂Ti₂O₆ phase reached 82% at $R_{Ca/Ti} = 0.46$. Savenko and Sakharov reported that the metastable Ca₂Ti₅O₁₂ phase formed in a Ti-rich region of $R_{Ca/Ti} = 0.2$ –0.4. An excess TiO₂ may be necessary to stabilize the pyrochlore Ca₂Ti₂O₆ phase.

Fig. 2 Electron diffraction pattern of mainly pyrochlore $Ca_2Ti_2O_6$ phase prepared at $T_{sub} = 1073$ K, $P_{tot} = 0.8$ kPa and $R_{Ca/Ti} = 0.34$.

Fig. 3 Surface and cross-sectional morphologies of mainly pyrochlore $Ca_2Ti_2O_6$ phase prepared at $T_{sub} = 1073$ K, $P_{tot} = 0.8$ kPa and $R_{Ca/Ti} = 0.34$.

(a)

(b)

(c)

20

30°

10°

Intensity (arb. units)

Fig. 4 Effect of $R_{Ca/Ti}$ on the peak intensity ratio of $Ca_2Ti_2O_6$ in the films prepared at $T_{sub} = 1073$ K and $P_{tot} = 0.8$ kPa.

4. Conclusions

Pyrochlore $Ca_2Ti_2O_6$ almost in a single phase was firstly prepared by MOCVD using $Ca(dpm)_2$ and $Ti(O-i-Pr)_2(dpm)_2$ precursors at $T_{\rm sub} = 1073$ K, $P_{\rm tot} = 0.8$ kPa and $0.3 < R_{\rm Ca/Ti} < 1$. The content of Ca₂Ti₂O₆ phase increased with decreasing $R_{\rm Ca/Ti}$, and reached 82% at $R_{\rm Ca/Ti} = 0.46$. The pyrochlore Ca₂Ti₂O₆ showed a columnar texture consisting of agglomerated grains of 50 nm in diameter.

Acknowledgements

This research was partially supported by the Japan society for the Promotion of Science (JSPS), Grant-in-Aids for Scientific Research (B), 18360310, and the JSPS-KOSEF Asian Core University program.

REFERENCES

- 1) L. Kaufman: Physica B + C 150 (1988) 99–114.
- V. G. Savenko and V. V. Sakharov: J. Inor. Chem. 24 (1979) 1389–1391; through JCPDS Card No. 33-0315.
- C. J. Ball and T. J. White: J. Solid State Chem. 65 (1986) 148–150; through JCPDS Card No. 04-0103.
- 4) C. N. R. Rao: Chem. Eur. J. 2 (1996) 1499–1504.
- T. Takeda, M. Nagata, H. Kobayashi, R. Kanno and Y. Kawamoto: J. Solid State Chem. 140 (1998) 182–193.
- T. Katsufuji, H. Y. Hwang and S.-W. Cheong: Phys. Rev. Lett. 84 (2000) 1988–2001.
- 7) M. Sato, R. Tu and T. Goto: Mater. Trans. 47 (2006) 1386–1390.