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Correct Interpretation of Hund’s Rule and Chemical Bonding

Based on the Virial Theorem

Kenta Hongo, Takayuki Oyamada, Youhei Maruyama,
Yoshiyuki Kawazoe and Hiroshi Yasuhara

Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

We have investigated Hund’s spin-multiplicity rule for the second and third row atoms (C, N, O, Si, P, and S) and the methylene molecule
(CH2) by means of diffusion Monte Carlo method and complete active space self-consistent field method, respectively. It is found that Hund’s
rule is interpreted to be ascribed to a lowering in the electron-nucleus attractive Coulomb interaction energy which is realized at the cost of
increasing the electron-electron repulsive Coulomb interaction energy as well as the kinetic energy. We have also studied correlation in the
hydrogen molecule H2. Correlation in H2 gives an increase of the electron density distribution nðrÞ in the left and right anti-binding regions, a
reduction of nðrÞ in the binding region, and an increase in the equilibrium internuclear separation. The importance of the virial theorem is
stressed in the evaluation of correlation effects on both Hund’s rule and chemical bonding in H2. [doi:10.2320/matertrans.48.662]
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1. Introduction

The virial theorem 2T þ V ¼ 0 holds for any stationary
state of many-electron systems,1–3) where T is the kinetic
energy and Vð¼ Ven þ Vee þ VnnÞ the total Coulomb poten-
tial energy; Ven, Vee, and Vnn are the electron-nucleus, the
electron-electron, and the nucleus-nucleus Coulomb poten-
tial energies, respectively. Hence the theorem is a necessary
condition for an accurate evaluation of the stationary state
energies of atoms, molecules and solids as well as their
various electronic properties. In accordance with the virial
theorem we have given for the first time the correct
interpretation of Hund’s spin-multiplicity rule for six atoms
and a molecule by diffusion Monte Carlo (DMC) method and
complete active space self-consistent field (CASSCF) meth-
od, respectively. We have also studied how correlation
changes the electron density distribution nðrÞ in the hydrogen
molecule H2.

Hund’s rule states that the highest spin-multiplicity state is
the most stable among all the possible states arising from a
single electronic configuration.4,5) This empirical rule is
applied to the ground state of atoms, ions, and molecules and
even their low-lying excited states in most cases. In almost all
textbooks excluding Levine’s,3) Hund’s rule has long been
interpreted to be ascribed to a reduction in Vee in the ground
state with the highest spin-multiplicity, i.e., the largest
possible amount of exchange energy.6,7) This traditional
interpretation assumes that the ground and the lowest excited
states could have the same set of orbitals. It gives the same T
and Ven for the two states and ascribes the energy difference
to Vee. In spite of giving the correct ordering of the two states,
the traditional interpretation is invalid since it violates the
virial theorem. Correctly, the two states independently fulfill
the virial theorem and hence 2�T þ�V ¼ 0, i.e., the
stabilization of the ground state is realized by lowering V

by an amount of 2�T at the cost of increasing T by
�Tð�T > 0Þ.

A number of authors have studied Hund’s rule for
atoms8–19) and light molecules20–28) by Hartree-Fock (HF)

and other variational calculations. They have found that the
stabilization of the highest multiplicity state relative to the
lower multiplicity states is ascribed to a lowering in Ven that
is gained at the cost of increasing Vee as well as T .
Davidson8,9) has first pointed out that Vee is larger for the
triplet than for the singlet by HF calculations for low-lying
excited states of the helium atom. Boyd17) has first introduced
the concept of less screening to explain how Ven is lowered.
In the higher multiplicity state there are more parallel spin
pairs and hence a larger Fermi hole around each electron.
Owing to the presence of a larger Fermi hole the Hartree
screening of the nuclear charge is reduced more effectively at
short interelectronic distances in the higher multiplicity state.
Thus, each electron experiences the nuclear charge more
effectively in the higher multiplicity state and hence the
electron density distribution contracts around the nucleus to
give a lowering in Ven and an increase in both T and Vee.

The Heitler-London (HL) model29,30) has long been
appreciated as the pioneering study of chemical bonding in
H2, but in fact fails to describe the essence of chemical
bonding since it violates the virial theorem.31–33) The linear
combination of 1s atomic orbitals (LCAO) also violates the
theorem. The minimal basis full configuration interaction
(CI), i.e., an interpolation of HL and LCAO is the best
approach to H2 so far as one uses 1s atomic orbitals alone. A
number of solid-state physicists still believe that the truth of
chemical bonding in H2 lies in between HL and LCAO34–37)

since such an interpolation compensates for individual
shortcomings. However, the minimal basis full CI is far
from describing the essence of chemical bonding since it
violates the virial theorem. The truth does not lie in between.

The virial theorem holds for both a molecule and its
constituent atoms. Hence the binding energy of a molecule
�Eð�E < 0Þ is given as �E ¼ ��T ¼ �V=2, where �T is
an increase in T and�V a lowering in V involved in chemical
bonding. The essence of chemical bonding is an inevitable
increase in T , �T and a concomitant lowering in V , �V

whose magnitude equals 2�T .
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2. Hund’s Rule for the Second and Third Row Atoms

Figure 1 shows the energy differences �E,�T ,�Ven, and
�Vee between the highest (high-S) and the next highest (low-
S) multiplicity states for the 2p and 3p atoms, evaluated from
HF38) and DMC.39) We have ascertained that the following
relations hold for any atom calculated: �E � Ehigh-S �
Elow-S < 0, �Ven � Vhigh-S

en � V low-S
en < 0, �T � Thigh-S �

T low-S > 0, and �Vee � Vhigh-S
ee � V low-S

ee > 0. The stabiliza-
tion of high-S state relative to low-S state, or equivalently the
negative value of �E is ascribed to that �Ven < 0. The
energy difference �Ven is largest in magnitude among all the
energy differences. The lower value of E in the ground state
is a direct consequence of the lower value of Ven therein. This
property may be termed the predominance of Ven in the
ground state.

Correlation gives a rather small change in the energy
difference �E between the two states for all the atoms,
though it lowers the energy level for both high-S and low-S
states by about 1 eV per electron. On the other hand,
correlation increases both �Vee and �Ven in magnitude by a
factor of 1:3 � 2:9, i.e., it produces a greater amount of
cancellation between �Vee and �Ven. The inclusion of cor-
relation does not change the HF interpretation of Hund’s rule.

It is summarized as follows: The stabilization of the
highest multiplicity state of all the atoms calculated is
ascribed to the greatest jVenj that is gained at the cost of
increasing Vee to its highest possible extent. Exchange in the
highest multiplicity state reduces most effectively the Hartree
screening of the nuclear charge at short interelectronic
distances. The resulting contraction of the electron density
distribution around the nucleus gives rise to the greatest jVenj.
Hund’s rule is not ascribed to the exchange energy gain, but
to exchange-induced less screening.

By means of CASSCF we has also ascertained that the
same conclusion holds for CH2;

28) �E ¼ �0:0618, �T ¼
0:0618, �V ¼ �0:1235, �Ven ¼ �0:1230, �Vee ¼ 0:0161,

�Vnn ¼ �0:0166, and��V=�T ¼ 2:000; all energies are in
hartree units. It is to be noted that spin-polarization in the
ground state of CH2 lowers Vnn through concomitant changes
in the molecular geometries, i.e., the equilibrium internuclear
separations and the equilibrium bond angles. Variational
optimization of the molecular geometries can be allowed for
through the fulfillment of the virial theorem in the present
CASSCF.

3. Chemical Bonding in H2

A list of the binding energy, its components, the virial
ratio, and the equilibrium internuclear separation evaluated
from various methods is given for H2 in Table 1. Both the
binding energy and the equilibrium internuclear separation in
DMC40) are in good agreement with those by Kolos and
Wolniewicz41) or experimental values.42,43) HF underesti-
mates the binding energy by about 23% and the equilibrium
internuclear separation by 1% for lack of correlation.40) The
virial ratio ��V=�T is accurate to the significant figure 2.0
for DMC and 2.00 for HF.40)

An increase in T ,�T (�T > 0) comes from an increase in
the curvature of the two-electron wavefunction induced by a
spatial variation of the combined attractive Coulomb field of
the two nuclei separated by Req and by the correlated motion
of two electrons. A lowering in V , �V (�V < 0) is ascribed
to a lowering in Ven (�Ven < 0) that overwhelms an increase
in Vee and Vnn (�Vee > 0 and �Vnn > 0).

As can be seen from Table 1, violation of the virial
theorem in HL, LCAO, and minimal basis full CI gives the
wrong sign of �T and �V .

The application of the so-called scaling method enables
one to give each improved version of HL, LCAO, and
minimal basis full CI that obeys the virial theorem. A list of
various quantities for these improved versions with their
optimized scaling factors is given at the bottom of Table 1.
The scaling method above changes both the sign of �T and
that of �V involving a reduction in Req.

A comparison of the electron density distribution nðrÞ is
made between HL, LCAO, minimal basis full CI, HF, and
DMC along the molecular axis z of H2 in Fig. 2 (a), (b), (c),
and (d). HF gives a good description of nðrÞ as a whole. The
difference in nðrÞ between HF and DMC is rather small.

Each of HL, LCAO, and minimal basis full CI under-
estimates nðrÞ around the two nuclei and overestimates nðrÞ
in the remote region far away from the two nuclei. This is
because any approximation using 1s atomic orbitals alone is
unable to give an appropriate description of such an essential
reconstruction of nðrÞ as is caused by the combined attractive
Coulomb field of the two nuclei separated by Req. The scaling
method could give a description of nðrÞ resembling the HF
value.

Correlation in H2 gives a couple of significant changes in
nðrÞ involving an increase in the equilibrium internuclear
separation Req.

40) Firstly, correlation enhances nðrÞ in the left
and right anti-binding regions;44) the value of nðrÞ at the
position of each nucleus is 0.466 bohr�3 for DMC and
0.460 bohr�3 for HF. Secondly, correlation reduces nðrÞ in
the binding region44) intervening between the nuclei; the
value of nðrÞ at the middle point between the nuclei is

Fig. 1 Energy differences between high-S and low-S states for the 2p and

3p atoms evaluated from HF and DMC.

Correct Interpretation of Hund’s Rule and Chemical Bonding Based on the Virial Theorem 663



0.284 bohr�3 for DMC and 0.288 bohr�3 for HF. Corre-
sponding to these changes in nðrÞ, the equilibrium internu-
clear separation is increased by an amount of about 1%, i.e.,
RDMC
eq ¼ 1:401 bohr and RHF

eq ¼ 1:386 bohr.
These correlation-induced features can be interpreted as

follows: The presence of the Coulomb hole around each
electron reduces the Hartree screening of the nuclear charge
at short interelectronic distances. This may be termed
correlation-induced less screening. Owing to less screening,
nðrÞ is enhanced in the left and right anti-binding regions. On
the other hand, the same less screening in the binding region
is overwhelmed by an increase in Req to give a reduction of
nðrÞ therein. A set of interconnected correlation effects above
are reasonable in the light of the electrostatic theorem45)

which is closely related to the virial theorem.

4. Concluding Remarks

The virial theorem and the Pauli exclusion principle are the

most fundamental requirements for the study of many-
electron systems. In accordance with the two requirements
we have interpreted Hund’s empirical rule for the six atoms
in the second and third rows in the periodic table and for the
methylene molecule, taking full account of correlation. The
traditional interpretation of Hund’s rule allows only for the
Pauli exclusion principle, completely neglecting the virial
theorem. Both of the two are indispensable for the correct
interpretation. We have analyzed the influence of correlation
on chemical bonding in the hydrogen molecule, with
emphasis on the fact that the truth of chemical bonding does
not lie in between the two naive models that resort to 1s

atomic orbitals alone.
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Table 1 The binding energy, its components, the virial ratio, and the equilibrium internuclear separation evaluated from various methods.

The exact values by Kolos and Wolniewicz41Þ and experimental values42;43Þ are also given. Energies are measured in units of hartree. The

equilibrium internuclear separation is measured in units of bohr. The figure in each parenthesis indicates the statistical error in the last

digit.

�E �T �V �Ven �Vee �Vnn ��V=�T Req

HL �0:11597 �0:1623 0.0463 �1:0611 0.4986 0.6088 0.285 1.643

LCAO �0:09908 �0:2033 0.1042 �1:0723 0.5527 0.6238 0.513 1.603

minimal basis full CI �0:11865 �0:1838 0.0652 �1:0435 0.5092 0.5995 0.355 1.668

HFa) �0:13365ð2Þ 0.1333(1) �0:2669ð1Þ �1:6494ð1Þ 0.66113(2) 0.7214 2.003(1) 1.386

DMCb) �0:17447ð4Þ 0.1749(14) �0:3518ð19Þ �1:6535ð17Þ 0.5880(4) 0.7137 2.011(19) 1.401

Exactc) �0:17447 0.1745 �0:3489 2.000 1.401

Experimentd) �0:17447 1.401

HL(� ¼ 1:193) �0:13908 0.1391 �0:2782 �1:5659 0.5805 0.7072 2.000 1.414

LCAO(� ¼ 1:166) �0:12823 0.1282 �0:2565 �1:6338 0.6555 0.7218 2.000 1.385

minimal basis full CI(� ¼ 1:194) �0:14794 0.1479 �0:2959 �1:6070 0.6120 0.6991 2.000 1.430

a) Ref. 40)

b) Ref. 40)

c) Ref. 41)

d) Ref. 42, 43)

Fig. 2 The electron density distribution nðrÞ evaluated from (a) HL, (b) LCAO, minimal basis full CI, (c) HF, and (d) DMC along the

molecular axis z of H2.
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