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A systematic diffusion Monte Carlo (DMC) study of both neutral and charged atomic systems from Li to Ne in the ground state is
performed to evaluate the correlation energy (Ec), the ionization energy (IE), and the electron affinity (EA) of these systems. The present study is
based on the fixed-node approximation in which the nodal surfaces of the DMC wavefunction is assumed to be the same as those of the Hartree-
Fock wavefunction. The present calculations reproduce 90� 7% of the exact value of correlation energy for the cations, 91� 3% for the neutral
atoms, and 92� 2% for the anions, respectively. The theoretical values of IE and EA in the present study are in good agreement with
experimental values within an accuracy of 0.3 eV for IE and 0.1 eV for EA. The variation of Ec and IE with respect to the atomic number Z is
interpreted. [doi:10.2320/matertrans.47.2612]
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1. Introduction

Owing to its self-consistency, Hartee-Fock (HF) theory1–3)

describes the true ground state of all atoms in complete
agreement with Hund’s first and second rules and reproduces
99.5% of the exact ground-state energy. On the other hand, an
accurate evaluation of the ionization energy (IE) and the
electron affinity (EA) for atoms, i.e., information about one-
electron excitations, requires a sophisticated theoretical
treatment involving correlation beyond the scope of HF
theory.

We shall start with the evaluation of IE and EA in the
framework of HF theory. According to Koopmans’ theo-
rem,4) the negative sign of the highest occupied orbital
energy and the lowest unoccupied orbital energy can
respectively be interpreted as IE and EA, if correlation and
orbital relaxation are both neglected. The Koopmans’
interpretation generally gives a good evaluation of IE for
atoms within an accuracy of �8%. This is because a
considerable amount of cancellation favorably occurs be-
tween the two errors arising from lack of correlation and
orbital relaxation. On the other hand, the same interpretation
gives a quite poor evaluation of EA for atoms since the two
errors are accumulated instead of being cancelled; according
to the Koopmans’ interpretation, the (N þ 1) state (anion)
cannot be stabilized for most cases.

If one takes full account of only orbital relaxation in the
evaluation of IE, i.e., if one evaluates both the (N � 1) and
the N state energies by the HF variational theory, the
resulting IE for atoms is necessarily underestimated in
magnitude by about 10% since no cancellation occurs
between the two errors. The same evaluation of EA still
remains underestimated in magnitude by an amount of about
1 eV.

Diffusion Monte Carlo (DMC) method5) can provide
accurate numerical results involving correlation, which is
comparable to the conventional quantum chemistry method
such as configuration interaction (CI) method. There are a
number of DMC studies about light atoms and molecules. For
example, Langfelder et al. have already evaluated the
correlation energy for neutral atoms from Li to Ne,6) based
on the fixed-node approximation7,8) in which the nodal

surfaces of the DMC wavefunction is assumed to be the same
as those of the HF wavefunction. Their calculations have
reproduced 93� 4% of the exact value of the correlation
energy for the atoms. However, no one has ever tried to
evaluate by DMC method IE and EA of atoms as well as the
correlation energy for the positively and negatively ionized
states of atoms.

In the present study, we have performed a systematic DMC
study of both neutral and charged atomic systems from Li to
Ne in order to evaluate the ionization energy and the electron
affinity as well as the correlation energy. Section II deals with
the computational methods. Section III provides numerical
results and some discussions.

2. Computational Methods

DMC is a powerful technique in which the exact wave-
function component is extracted from a starting trial wave-
function to develop into its complete form. The time-
dependent Schrödinger equation has an exponential factor
with an imaginary argument expð�iĤHt=h� Þ, where ĤH is the
many-electron Hamiltonian. By introducing the imaginary-
time � ¼ it, the equation is transformed into a diffusion-type
Fokker-Planck equation. Its imaginary-time evolution, owing
to the presence of a damping factor expð�ĤH�=h� Þ, can in
principle lead to the exact wavefunction after a long enough
interval �, unless the starting trial wavefunction happens to be
orthogonal to the exact one.

The practice of DMC method depends strongly on a
starting trial wavefunction chosen: (1) DMC usually resorts
to the fixed-node approximation.7,8) If the nodal surfaces of
the trial wavefunction is accurate enough, this approximation
is expected to give a very accurate energy. Generally, the
fixed-node DMC energy is variational in the sense that it is
less than or equal to the energy calculated with the starting
trial wavefunction that is called the variational Monte Carlo
(VMC) energy and greater than or equal to the exact energy.
(2) Owing to the singular behavior of the Coulomb
interaction at short distances, the many-electron wavefunc-
tion exhibits spatial singularities called cusps.9) It forms a
cusp-like shape whenever an electron approaches any
nucleus or any two electrons approach each other with

Materials Transactions, Vol. 47, No. 11 (2006) pp. 2612 to 2616
Special Issue on Advances in Computational Materials Science and Engineering IV
#2006 The Japan Institute of Metals

http://dx.doi.org/10.2320/matertrans.47.2612


parallel or antiparallel spin configuration and hence its first-
order derivative has a discontinuity at riI ¼ 0 or rij ¼ 0,
where riI denotes the distance between an electron and a
nucleus and rij the interelectronic distance. Unless such cusp
discontinuities are properly taken into account in a starting
trial wavefunction, no reasonably convergent result can be
obtained for the DMC energy.

A single-determinant Slater-Jastrow type function is
adopted as a starting trial wavefunction in the present study.
We have calculated the HF orbitals entering the Slater
determinant with the GAUSSIAN98 code10) and a 6-
311++G(3df) basis set. The resulting HF orbitals are by
construction unable to reproduce the nucleus-electron cusp.
In order to recover the nucleus-electron cusp we have
adopted an extrapolation method in which the main-body
behavior of these HF orbitals is smoothly connected to an
appropriate analytic form near the nucleus.11) The Jastrow
factor is usually constructed from homogeneous isotropic
electron-electron terms and isotropic nucleus-electron terms
centered on the nucleus.12,13) The first terms are responsible
for the description of both the spin-antiparallel and spin-
parallel electron-electron cusps.

The Jastrow factor we have adopted here includes 12
parameters which are optimized by minimizing the variance
of the VMC energy.14,15) In order to arrive at high accuracy
we have accumulated the numerical results over 3� 106

steps. A time step of 0:002 � 0:003 a.u. is used to make the
time-step error negligibly small. We have used the CASINO
code.16)

3. Results and Discussions

3.1 Correlation energy
Table 1 gives a list of an estimated exact correlation

energy and the present DMC correlation energy for the
neutral atoms from Li to Ne and their cations and anions. The

exact correlation energy is defined as the difference between
the exact energy Eexact and the HF energy EHF. We have
calculated EHF from the HF code due to Fischer et al.17) Eexact

is the value that Chakravorty et al. have estimated from a
systematic investigation of various isoelectronic systems.18)

The recovering percentage of the estimated exact correlation
energy for the present DMC calculations is also given in
Table 1.

The present DMC study gives the recovering percentage of
91� 3% for neutral atoms, which is comparable to the
previously reported value 93� 4%.6) For the cations and
anions, the recovering percentage amounts to 90� 7% and
92� 2%, respectively. The recovering percentage tends to be
somewhat improved as the electron number of the system is
increased.

Figure 1 shows the dependence of the correlation energy
Ec on the atomic number Z for neutral atoms and their cations
in the present DMC calculations. As is obvious from Fig. 1,
the correlation energy Ec for both neutral atoms and their
cations is reduced nearly linearly with increasing Z. The
difference in Ec between neutral atoms and their cations, if
averaged, amounts to about 1 eV. This is ascribed to the
presence of an extra electron in neutral atoms. For neutral
atoms, one can observe a discontinuity in the linear
coefficient of Ec versus Z at Z ¼ 7 (N). For their cations,
the same kind of discontinuity is shifted to Z ¼ 8 (Oþ). The
negative slope of Ec with respect to Z becomes steeper
abruptly at Z ¼ 7 for neutral atoms and Z ¼ 8 for their
cations where the spherically symmetric distribution of the
electron density is realized owing to completion of all the
possible spin-parallel pair arrangements. Thus, the variation
in the magnitude of correlation energy with respect to Z

reflects the electronic structure in neutral atoms and their
cations. The presence of the spin-antiparallel pair arrange-
ments in the valence electron density is responsible for such
an abrupt increase in the negative slope of Ec, which

Table 1 The correlation energy Ec for both neutral and charged atomic systems from Li to Ne in the ground state. Statistical errors in the

present DMC study are indicated in the parenthesis. All energies are in hartree units. The recovering percentage of the exact correlation

energy (%Ec) is also given.

neutral (N ¼ Z) cation (N ¼ Z � 1) anion (N ¼ Z þ 1)
Atom Method

Ec %Ec Ec %Ec Ec %Ec

Li DMC �0:0445ð4Þ 98.18(4) �0:0434ð2Þ 99.80(2) �0:0689ð3Þ 95.02(3)

(Z ¼ 3) Exact �0:0454 100 �0:0435 100 �0:0725 100

Be DMC �0:0843ð4Þ 89.43(4) �0:0471ð4Þ 99.50(4)

(Z ¼ 4) Exact �0:0943 100 �0:0473 100

B DMC �0:1079ð5Þ 86.47(5) �0:0901ð5Þ 80.95(5) �0:1295ð6Þ 89.40(6)

(Z ¼ 5) Exact �0:1248 100 �0:1113 100 �0:1449 100

C DMC �0:1380ð4Þ 88.21(4) �0:1133ð4Þ 81.62(4) �0:1659ð7Þ 90.82(7)

(Z ¼ 6) Exact �0:1565 100 �0:1388 100 �0:1827 100

N DMC �0:1696ð9Þ 89.96(9) �0:1416ð9Þ 84.91(9)

(Z ¼ 7) Exact �0:1886 100 �0:1668 100

O DMC �0:2346ð11Þ 90.98(11) �0:1744ð11Þ 89.82(11) �0:3047ð13Þ 91.98(13)

(Z ¼ 8) Exact �0:2579 100 �0:1942 100 �0:3313 100

F DMC �0:2963ð11Þ 92.03(11) �0:2343ð11Þ 90.56(11) �0:3715ð13Þ 93.65(13)

(Z ¼ 9) Exact �0:3220 100 �0:2587 100 �0:3967 100

Ne DMC �0:3576ð15Þ 91.71(15) �0:2924ð15Þ 90.06(15)

(Z ¼ 10) Exact �0:3899 100 �0:3247 100
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continues until all the possible spin-antiparallel pair arrange-
ments are completed. The contribution to Ec from a spin-
antiparallel pair is about three times larger in magnitude than
that from a spin-parallel pair, i.e., the spin-antiparallel
contribution to Ec from the Coulomb hole due to the
Coulomb repulsive interaction is by a factor of about 3 larger
than the spin-parallel contribution to Ec from the deepening
Fermi hole due to the Coulomb repulsive interaction. To
conclude, an abrupt change in the nearly linear coefficient of
Ec observed at Z ¼ 7 or 8 comes from the fact that the
number of spin-parallel pairs is increased for Z < 7ð8Þ
following the Hund’s first and second rules and thereafter the
number of spin-antiparallel pairs is increased for Z > 7ð8Þ. In
a word, an abrupt change observed in the variation of Ec with
respect to Z reflects the Hund’s first and second rules.

3.2 Ionization energy
Table 2 shows a list of various theoretical values and

experimental values19) for IE of the eight atoms. The DMC
calculations evaluate IE as the difference in the total energy
between a cation and a neutral atom. By �HF we mean the
method for evaluating IE from the difference between the two
HF variational calculations. The �HF method necessarily
underestimates IE since it takes full account of orbital
relaxation alone. The averaged magnitude of the under-
estimate amounts to about 1 eV, which is equivalent to an
increase in the correlation energy due to the presence of an
extra electron. The Koopmans’ interpretation underestimates
IE for metallic elements (Li and Be) by about 0.5 eV and
overestimates IE for non-metallic elements (B, C, N, O, F,
and Ne) by about 1.5 eV. All values of IE in the present DMC
study are in good agreement with experimental values within
an accuracy of 0.3 eV.

Figure 2 gives a comparison of three different theoretical
values of IE with experimental values. As is seen from the
figure, IE takes its local maximum values at Z ¼ 4, 7, and 10
where the spherically symmetric distribution of the electron
density is realized. This is because the spherically symmetric
distribution causes a remarkable contraction of the electron
density around the nucleus to lower effectively the nucleus-
electron attractive Coulomb interaction energy. Both DMC
and �HF give an appropriate description of all the local
maximum values of IE (except Z ¼ 11 for DMC), while the
Koopmans’ interpretation fails to reproduce two local
maximum values at Z ¼ 4, 7.

Table 2 The ionization energies for the neutral atoms. Statistical errors in

the present DMC study are indicated in the parenthesis. By�HF we mean

the method for evaluating IE from the difference between the two HF

variational calculations. All energies are in eV units.

Atom Koopmans �HF DMC Experiment

Li (Z ¼ 3) 5.34 5.34 5.35(2) 5.39

Be (Z ¼ 4) 8.42 8.04 9.06(1) 9.32

B (Z ¼ 5) 8.43 7.93 8.41(2) 8.30

C (Z ¼ 6) 11.79 10.79 11.46(2) 11.27

N (Z ¼ 7) 15.44 13.96 14.71(3) 14.55

O (Z ¼ 8) 17.19 11.89 13.52(4) 13.62

F (Z ¼ 9) 19.86 15.72 17.40(4) 17.43

Ne (Z ¼ 10) 23.14 19.84 21.61(6) 21.62

Fig. 2 A comparison of three different theoretical values for IE with

experimental values. Statistical errors in the figure are too small to discern.

The DMC value of IE for Z ¼ 11 is missing.

Fig. 1 The variation of Ec with respect to Z for neutral atoms and their

cations in the present DMC study. Statistical errors in the figure are too

small to discern.
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Here we give an explanation of why the Koopmans’
interpretation fails to reproduce the two local maximum
values of IE at Z ¼ 4, 7 and succeeds to reproduce the third
local maximum at Z ¼ 10. The exact, or experimental value
of IE (IEexp) and the value of IE evaluated from Koopmans’
theorem (IEKT) are related as follows:

IEexp ¼ IEKT þ�ER þ�Ec;

�ER � IE�HF � IEKT; ð1Þ

�Ec � IEexp � IE�HF;

where IE�HF is the value of IE evaluated from the �HF
method, �ERð< 0Þ is the orbital relaxation energy, and
�Ecð> 0Þ is the difference in the correlation energy between
a cation and a neutral atom. Figure 3 gives a plot of both
�ER and �Ec. As is obvious from Fig. 3, the correlation
contribution to IE for metallic elements (Li and Be) is greater
than that for non-metallic elements (B, C, N, O, F, and Ne).
On the other hand, the orbital relaxation contribution to IE for
the non-metallic elements is greater than that for the metallic
elements. The reason why the Koopmans’ interpretation fails
to give the local maximum at Z ¼ 4 is that the correlation
contribution to IE for the Be atom (Z ¼ 4) is particularly
important among all the atoms for Z � 7 since the presence
of occupied 2s levels and near-degenerate unoccupied 2p

levels gives rise to a local increase in the magnitude of Ec. On
the other hand, the reason why the Koopmans’ interpretation
fails to give the local maximum at Z ¼ 7 is different from the
case of Z ¼ 4. As is obvious from Fig. 2, it is because the
Koopmans’ interpretation overestimates IEKT of the neigh-

boring O atom (Z ¼ 8) by more than 3 eV for lack of orbital
relaxation; the overestimate is too large for IEKT of the N
atom (Z ¼ 7) to be prominent. The third local maximum at
Z ¼ 10 is successfully described by the Koopmans’ inter-
pretation since no remarkable behavior appears in the
magnitude of Ec at Z ¼ 10 and in the magnitude of orbital
relaxation at the neighboring atom (Z ¼ 11).

3.3 Electron affinity
Table 3 gives a list of various theoretical values and

experimental values20) for EA of Li, B, C, O, and F atoms.
The DMC method evaluates EA as the difference in the total
energy between a neutral atom and an anion. Note that each
of Be, N, and Ne atoms is unable to form a stable negative
ion. This is because remarkable contraction of the electron
density around the nucleus due to its spherically symmetric
distribution occurring in each of these atoms screens its
nuclear attractive Coulomb interaction so perfectly that an
additional electron can no more be bounded to the nucleus.
This interpretation is based on the assumption that in the
formation of a negative iron the original electron config-
uration for a neutral atom is not changed by adding an extra
electron to it.

For lack of correlation, the�HF method fails to stabilize a
negative ion for each of Li, B, and O atoms. All values of EA
in the present DMC study are in good agreement with
experimental values within an accuracy of 0.1 eV. The
agreement in the evaluation of EA is better than in the
evaluation of IE. This probably reflects that the recovering
percentage of the correlation energy tends to be somewhat
improved as the electron number of the system is increased.
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