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Calcium titanate (CaTiO3) films were prepared by metal-organic chemical vapor deposition (MOCVD) using Ca(dpm)2 and Ti(O-i-
Pr)2(dpm)2 precursors. The phases, composition and morphology of Ca-Ti-O system films changed depending on molar ratio of Ca to Ti
(RCa/Ti), total pressure (Ptot) and substrate temperature (Tsub). CaTiO3 films in a single phase were obtained at the condition of RCa/Ti ¼ 0:95,
Tsub ¼ 1073K and Ptot ¼ 0:8 kPa, and RCa/Ti ¼ 0:78, Tsub ¼ 973K and Ptot ¼ 0:8 kPa. The CaTiO3 films prepared at Tsub ¼ 1073K had a well-
developed columnar texture, and significant (010) orientation was observed at RCa/Ti from 0.59 to 0.72. The deposition rate showed the highest
value of 1:25� 10�8 ms�1 at Tsub ¼ 1073K, Ptot ¼ 0:4 kPa and RCa/Ti ¼ 0:95. [doi:10.2320/matertrans.47.1386]
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1. Introduction

Titanium (Ti) and its alloys have been applied as dental
implants and artificial aggregate due to their good biocom-
patibility and mechanical properties.1,2) It is known that the
reproduction of bones on Ti substrates can be promoted by
ceramic coatings including hydroxyapatite (HAp,
Ca10(PO4)6(OH)2), calcium phosphate (Ca3(PO4)2) and
calcium titanate (CaTiO3). Then, many kinds of process
have attempted to obtain these coatings by ion beam
sputtering,3) laser beam sputtering,4) magnetic field sputter-
ing,5) sol-gel,6) aerosol-gel,7) electrophoretic deposition,8)

plasma spray deposition9) and ion beam evaporation.10) In
those processes, the adherence of coatings to the substrate is
the primal issue for practical applications, and therefore
several techniques have been developed by modifying the
surface such as controlling surface roughness,11) pre-oxida-
tion of Ti surface forming TiO2,

12) CaTiO3 coating by
sputtering as a buffer layer.13) Although sputtering can
provide well-adhered CaTiO3 coatings, the deposition rate
could be too small, usually ranging from 10�11 to 10�12

ms�1.
Chemical vapor deposition (CVD) is advantageous to

obtain wide-ranged coatings at relatively high deposition rate
with good morphology controllability and well-adherence to
substrates, as indicated in the preparation of TiO2

14) and
ZrO2

15) films. Although so many oxide and non-oxide films
have been prepared by CVD, no report on the preparation of
CaTiO3 films by CVD has been published.

In this study, CaTiO3 films were prepared by CVD using
organometallic precursors and the effects of deposition
conditions on phases, morphology, preferred orientation
and deposition rate were investigated.

2. Experimental Procedures

A vertical cold-wall type CVD apparatus was employed to
prepare Ca-Ti-O films. Source precursors of Ca(dpm)2 (bis-
dipivaloylmethanato-calcium) and Ti(O-i-Pr)2(dpm)2 (bis-
isopropoxy-bis-dipivaloylmethanato-titanium) powders were

heated at 523 to 573 and 393 to 453K, respectively. The
source vapors were carried into the CVD reactor with Ar gas.
O2 gas was separately introduced by using a double tube
nozzle, and mixed with the precursor vapors in a mixing
chamber placed above a substrate holder. The total gas
flow rate (FRtot ¼ FRAr þ FRO2

þ FRsource vapor) was fixed at
3:33� 10�6 m3 s�1. The total pressure (Ptot) in the CVD
reactor was kept in the range of 0.4 and 1.0 kPa. The
deposition conditions are summarized in Table 1. Fused
quartz glass plates of 10� 15� 0:5mm were used as
substrates because of identification of generation phase and
observation of broken-out section can be performed easily.
The crystal structure was analyzed by X-ray diffraction
(XRD). The microstructure and thickness of deposited films
were examined by scanning electron microscopy (SEM). The
deposition rate (Rdep) was determined from the relationship
between thickness and deposition time.

The thermodynamic calculation was conducted to estimate
the stable solid phases and gas compositions, as functions of
deposition conditions, that is often called as CVD phase
diagram. The equilibrium compositions of gas and solid
species in the Ca-Ti-C-H-O system at various deposition
conditions were calculated by free energy minimization

Table 1 Deposition conditions of Ca-Ti-O films.

Precursor Temperature, Tprec

Ca(dpm)2 : 323{573K

Ti(O-i-Pr)2(dpm)2 : 193{453K

Total gas flow rate, FRtot : 3:33� 10�6 m3 s�1

Carrier Gas : Ar

Ca(dpm)2 : 0:83� 10�6 m3 s�1

Ti(O-i-Pr)2(dpm)2 : 0:83� 10�6 m3 s�1

Oxidation Gas : O2

O2 gas flow rate, FRO2
: 0:17{1:5� 10�6 m3 s�1

Total pressure, Ptot : 0:4{1:0 kPa

Deposition temperature, Tsub : 873{1123K

Deposition time : 0.9 ks

Substrate : fused quartz glass
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method using SOLGASMIX-PV.16) Chemical species con-
sidered in the calculation are summarized in Table 2. The
thermodynamic data for chemical species were taken from
Refs. 17) and 18).

3. Results and Discussion

3.1 Crystal structure
Figure 1 shows the relationship between precursor temper-

ature (Tprec) and the evaporation rate of Ca(dpm)2 and Ti(O-i-
Pr)2(dpm)2. The evaporation rates exponentially increased
with increasing temperature. Although the evaporation rate
of Ti(O-i-Pr)2(dpm)2 was 100 times greater than that of
Ca(dpm)2, the precursor molar ratio of Ca to Ti (RCa/Ti) was
precisely controlled by changing the evaporation temper-
ature.

Figure 2 shows X-ray diffraction patterns of Ca-Ti-O films
prepared at Ptot ¼ 0:8 kPa, PO2

¼ 0:32 kPa, Tsub ¼ 873 to
1073K and RCa/Ti ’ 1. Ca4Ti3O10 and CaO mixed films
were obtained at Tsub ¼ 873K, and Ca(OH)2 contained
CaTiO3 films were obtained at Tsub ¼ 973K. At Tsub ¼
1073K, CaTiO3 films in a single phase were obtained.
CaTiO3 and Ca4Ti3O10 are orthorhombic belonging to the

space group of Pnma and Pcab, respectively. The lattice
parameters of CaTiO3 are a ¼ 0:5442 nm, b ¼ 0:7641 nm
and c ¼ 0:5380 nm, and those of Ca4Ti3O10 are a ¼
0:5408 nm, b ¼ 2:714 nm and c ¼ 0:5433 nm which were
taken from JCPDS data.19,20) The phases of CaTiO3 and
Ca4Ti3O10 in the films depicted in Figs. 2(a) and (c) were
quasi-tetragonal structure due to broadening of peaks, and
these lattice parameters were calculated as a ¼ 0:548 nm,
b ¼ 0:764 nm for CaTiO3 phase and a ¼ 0:546 nm, b ¼
2:73 nm for Ca4Ti3O10 phase.

Figure 3 summarizes the Tsub � RCa/Ti phase diagram of
Ca-Ti-O films at Ptot ¼ 0:8 kPa and PO2

¼ 0:32 kPa. At
Tsub ¼ 873K, mixture films of CaTiO3, CaO and Ca(OH)2
were obtained at RCa/Ti < 0:5, and mixture films of
Ca4Ti3O10 and CaO were obtained at 0:5 < RCa/Ti < 2, and
mixture films of CaO and Ca(OH)2 were obtained at

Table 2 Chemical species used in the thermodynamic calculation.

Gas species

Ar O O2 H

H2 HO CO CO2

H2O HCO H2O2 HO2

CH4 CH2O CH2O2 CaO

TiO TiO2

Solid species

TiO (�) TiO (�) TiO (�) TiO2 (anatase)

TiO2 (rutile) Ti2O3 Ti3O5 Ti3O5 (�)

Ti4O7 (�) TiC CH2O CaO

CaO2 CaCO3 CaTiO3 Ca3Ti2O7

Ca4Ti3O10
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Fig. 1 Effect of precursor temperature on the evaporation rate of Ca(dpm)2
and Ti(O-i-Pr)2(dpm)2 at PO2

¼ 0:32 kPa and Ptot ¼ 0:8 kPa.
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Fig. 2 XRD patterns of Ca-Ti-O films prepared at PO2
¼ 0:32 kPa and

Ptot ¼ 0:8 kPa. (a) Tsub ¼ 1073K and RCa/Ti ¼ 0:95, (b) Tsub ¼ 973K and

RCa/Ti ¼ 1:02, (c) Tsub ¼ 873K and RCa/Ti ¼ 0:9.
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Fig. 3 Tsub � RCa/Ti phase diagram of Ca-Ti-O films at PO2
¼ 0:32 kPa and

Ptot ¼ 0:8 kPa.
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RCa/Ti > 2. At Tsub ¼ 973K, TiO2 films (anatase) were
obtained at RCa/Ti < 0:8, and CaTiO3 in a single phase or
containing small amount of Ca(OH)2 were obtained at
0:8 < RCa/Ti < 1:02. Ca4Ti3O10 films with a small amount of
Ca(OH)2 were obtained at 1:02 < RCa/Ti < 1:5, and mixture
films of Ca4Ti3O10, CaO and Ca(OH)2 were obtained at
RCa/Ti > 1:5. At Tsub ¼ 1073K, TiO2 films (anatase) were
obtained at RCa/Ti < 0:6, and CaTiO3 films in a single phase
or with a small amount of Ca2Ti2O6 were obtained at
0:6 < RCa/Ti < 1:2. Ca(OH)2 were occasionally contained.
Ca4Ti3O10 films with Ca(OH)2 were obtained at 1:2 <
RCa/Ti < 1:5, and mixture films of Ca4Ti3O10 and CaO were
obtained at 1:5 < RCa/Ti < 2:4, and CaO films in a single
phase were obtained at RCa/Ti > 2:4. Ca(OH)2 phase ob-
tained in wide-ranged conditions may be formed by the
reaction of CaO and moisture in air after the deposition.

Figure 4 shows the calculated CVD phase diagram of the
Ca-Ti-O system at Ptot ¼ 0:8 kPa and PO2

¼ 0:32 kPa. By
comparing Fig. 3 with Fig. 4, the general trend changing
from TiO2, CaTiO3, Ca4Ti3O10 to CaO with increasing RCa/Ti

was in agreement with the experiments. At Tsub less than
900K, the CaO formation could be kinetically easier than the
TiO2 formation. Consequently, CaTiO3 phase was obtained
at low Ca concentration conditions. This may be caused by
some kinetic reason. It can be understood that the thermody-
namic equilibrium is almost attained at Tsub > 950K.
Figure 5 demonstrates the calculated effect of oxygen partial
pressure (PO2

) on the formation of free-carbon. The calcu-
lation suggests that hydrocarbons contained in the metal-
organic precursors could be co-deposited as free-carbon at
PO2

< 3 Pa. In the present experiments, the PO2
was kept at

40 to 360 Pa, and the sufficient amount of oxygen was
supplied to eliminate free-carbon in the films.

3.2 Microstructure
Figure 6 shows the effect of PO2

on the surface morphol-
ogy of CaTiO3 films almost in a single phase prepared at
RCa/Ti ¼ 0:95, Tsub ¼ 1073K and Ptot ¼ 0:8 kPa. The grain
size increased with increasing PO2

, being about 50 nm and 2
to 3 mm at PO2

¼ 0:08 and 0.32 kPa, respectively.
Figure 7 depicts the effect of Tsub on the surface and cross-

sectional morphology of CaTiO3 films prepared at
RCa/Ti ¼ 0:95, Ptot ¼ 0:8 kPa and PO2

¼ 0:32 kPa. The film
prepared at Tsub ¼ 873K had dense microstructure, and the
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Fig. 4 Calculated CVD phase diagram for the Ca-Ti-O system at
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1 10 100
800

850

900

950

1000

1050

1100

O2 partial pressure, PO2 / Pa

D
ep

os
iti

on
 te

m
pe

ra
tu

re
, T

su
b 

/ K

Ptot = 0.8 kPa

CaTiO3
C 
+ 

CaTiO3

Fig. 5 Effect of oxygen partial pressure on the deposition of carbon at
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Fig. 6 Effect of PO2
on the surface morphology of CaTiO3 films prepared

at RCa/Ti ¼ 0:95, Tsub ¼ 1073K and Ptot ¼ 0:8 kPa. (a) PO2
¼ 0:08 kPa,

(b) PO2
¼ 0:32 kPa.

5 µm5 µm

(a) (b)

(d)

5 µm

(c)

5 µm

Fig. 7 Effect of Tsub on the surface and cross-sectional morphology of

CaTiO3 films prepared at PO2
¼ 0:32 kPa and Ptot ¼ 0:8 kPa. (a), (b):

Tsub ¼ 873K (c), (d): Tsub ¼ 1073K.
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grain size was about 50 nm. Significant cracks were observed.
This may be caused by the thermal expansion mismatch
between CaTiO3 film and quartz substrate (�CaTiO3

¼ 12:2�
10�6 K�1, �quarts ¼ 0:5� 10�6 K�1). The CaTiO3 film pre-
pared at Tsub ¼ 1073K showed a cauliflower-like texture
with the grain size of 2 to 3 mm. These grains consisted of
farther smaller grains about 50 nm in diameter. The cross-
sectional view showed a well-developed columnar texture
(Fig. 7(d)). The significant increase in grain size with
increasing PO2

and Tsub could be associated with the change
of microstructure from dense to columnar texture. It is
generally understood that the texture changes from dense to
columnar to dendrite to plate single crystal with increasing
substrate temperature and decreasing supersaturation of
precursors in the gas phase.21) In the present study, the
significant grain growth with PO2

can be caused by the
decrease of supersaturation of precursors due to the homo-
geneous reactions (powder formation) in the gas phase. The
CaTiO3 film prepared at Tsub ¼ 1073K had almost no cracks.
The columnar texture had small gaps between each elongated
grains. It is well understood that these gaps can be effective to
relax the thermal stress between films and the substrate
resulting to less cracking as reported in YSZ (yttria stabilized
zirconia) coatings on Ni-base super alloys.22)

Figure 8 shows the effect of RCa/Ti on the surface
morphology of CaTiO3 films in a single phase (a) and
containing a small amount of Ca2Ti2O6 (b) prepared at
Ptot ¼ 0:8 kPa and Tsub ¼ 1073K, respectively. Although the
film prepared at RCa/Ti ¼ 0:95 had a cauliflower-like texture,
the each grain showed angular edges. The edged shape
developed with decreasing RCa/Ti, and almost hexagonal
grains were observed at RCa/Ti ¼ 0:72.

Figure 9 shows the effect of RCa/Ti on the XRD patterns of
the films prepared at Ptot ¼ 0:8 kPa, Tsub ¼ 1073K and
PO2

¼ 0:32 kPa. Significant (010) orientation was appeared
at RCa/Ti ¼ 0:59 and 0.72, where a small amount of Ca2Ti2O6

was co-deposited. The (010) orientation and co-deposition
of Ca2Ti2O6 were observed only at Tsub ¼ 1073K. The
Ca2Ti2O6 formation will be described in detail elsewhere.

3.3 Deposition rate
Figure 10 depicts the effect of PO2

on the deposition rate
(Rdep) at RCa/Ti ’ 1, Tsub ¼ 1023K and Ptot ¼ 0:8 kPa. The
Rdep increased with increasing PO2

. It can be understood that
the Rdep was controlled by oxygen supply (mass transfer

controlled process) which is consisted with the Tsub depend-
ence of Rdep will be discussed later.

Figure 11 shows the effect of Ptot on the Rdep at RCa/Ti ’ 1,
PO2

¼ 0:36 kPa and Tsub ¼ 873K. The deposition rate had a
maximum value at Ptot ¼ 0:4 kPa. The similar phenomena
were obtained at Tsub ¼ 973 and 1073K. In CVD, the
deposition rate generally increases with source gas supply
which is obviously increased with total pressure. However,
the homogenous reaction in the gas phase could proceed
more significantly at higher total pressures. Therefore, it is
common that the deposition rate has a maximum at a specific
total pressure. The similar Ptot � Rdep relationship were
observed in Tsub ¼ 973 and 1073K.

Figure 12 shows the relationship between Tsub and Rdep at
RCa/Ti ’ 1, PO2

¼ 0:32 kPa in the Arrhenius format. The Rdep

increased with increasing Tsub, and showed a maximum value
of 1:11� 10�8 and 1:25� 10�8 ms�1 at Ptot ¼ 0:8 and
0.4 kPa, respectively. At Tsub ¼ 1123K, the deposition rate
slightly decreased, which may be caused by the homoge-

(a) (b)

1 µm 1 µm

Fig. 8 Effect of RCa/Ti on the surface morphology of CaTiO3 films

prepared at PO2
¼ 0:32 kPa, Ptot ¼ 0:8 kPa and Tsub ¼ 1073K. (a)

RCa/Ti ¼ 0:95, (b) RCa/Ti ¼ 0:72.

10° 20° 30° 40° 50° 60° 70° 80°

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

(c)

(0
20

)

(1
21

)

(0
40

)

(3
21

)

(2
42

)

(3
23

)

(0
22

)
(1

12
) (2
02

)

2θ (CuKα)

(b)

(a)

(1
23

)

(2
40

)
(0

42
)

(0
04

)

(4
00

)

(1
61

)

(2
00

)

(0
02

)

Ca2Ti2O6

Fig. 9 XRD patterns of CaTiO3 films prepared at PO2
¼ 0:32 kPa,

Ptot ¼ 0:8 kPa and Tsub ¼ 1073K. (a) RCa/Ti ¼ 0:95, (b) RCa/Ti ¼ 0:72,
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neous reaction in the gas phase.21) The higher total pressure,
the more homogeneous reaction in the gas phase. Therefore,
the Rdep decreased more significantly over Tsub ¼ 1123K at
higher Ptot. The activation energies for Ptot ¼ 0:4 and 0.8 kPa
in the low temperature region were both about 70 kJmol�1. It
is known that the rate-controlling step in CVD could be a
diffusion-limited process in a high Tsub region with an
activation energy of a few kJmol�1 and chemical reaction
limited process in a low Tsub region with an activation energy
of more than several 10 kJmol�1.21) The activation energy of
70 kJmol�1 in the present study could suggest chemical
reaction limited process in the low Tsub region. Further study
should be necessary to understand the deposition mechanism
CaTiO3 films by CVD. Since no paper for the preparation of
CaTiO3 films by CVD method has been published, the results
of TiO2

14) films by CVD using the same CVD apparatus with
almost the same conditions were included in Fig. 12. The
trend of the relationship between the Rdep and the Tsub for
TiO2 films was the same as the present study. The deposition
of CaTiO3 films may be closely associated with the formation
of TiO2 films.

4. Conclusions

Ca-Ti-O films were prepared by CVD using Ca(dpm)2 and
Ti(O-i-Pr)2(dpm)2 precursors. CaTiO3 films in a single phase
were obtained at Tsub ¼ 973 to 1073K, RCa/Ti ¼ 0:78 to 0.95,
PO2

¼ 0:32 kPa and Ptot ¼ 0:8 kPa. The morphology of
CaTiO3 films changed from dense fine grain to cauliflower-
like columnar texture with increasing PO2

and Tsub. The
CaTiO3 films containing Ca2Ti2O6 were obtained at Tsub ¼
1073K, RCa/Ti ¼ 0:72 to 0.59, Ptot ¼ 0:8 kPa and PO2

¼
0:32 kPa. These films had edged angular grains and signifi-
cant (010) orientation. The activation energy for the
deposition was about 70 kJmol�1 suggesting a chemical
reaction limited process. The highest deposition rate of
CaTiO3 film in a single phase was 1:25� 10�8 ms�1 at
Tsub ¼ 1073K, Ptot ¼ 0:4 kPa and PO2

¼ 0:32 kPa. The
deposition rate of films increased with increasing PO2

and
Tsub, and decreasing Ptot.
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