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In this paper, we implement the conjugate gradient method in the all-electron mixed-basis approach. The conver-
gence of the electronic states is greatly improved by using the conjugate gradient method compared to the steepest

descent method. We show a result for the case of Cu,.
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I. Introduction

Ab initio molecular dynamics®® based on the local
density approximation (LDA)® and the adiabatic ap-
proximation® has attracted considerable attention as a
conceptually new method, which is capable to describe
dynamically the stability and reactivity of any objects
including clusters, surfaces and bulk materials at finite
temperatures, in principle, without using any pa-
rameters. In electronic-structure calculations of tran-
sition-metal systems, where 3d valence orbitals are rela-
tively localized, the standard pseudopotential approach
combined with plane wave (PW) expansion® becomes
heavier than alternative approaches such as muffin-tin
(including APW, KKR, LMTO, and similar methods)
and LCAO (linear combination of atomic orbitals)
methods®.

The application of muffin-tin method to the molecular
dynamics of clusters and surfaces is, however, not easy
because the way of partitioning the system into Wigner-
Seitz cells changes time to time®”, although several for-
mulations and calculations can be found rather recent-
ly®-0D, Ohno et al. have developed the all-electron mix-
ed-basis approach which is applicable to the molecular
dynamics of objects in any atomic environments?.

The mixed-basis means the combination of both plane
waves (PWs) and atomic orbitals (AOs) is used as basis
functions. The introduction of AOs reduces considerably
the computational load of the PW-expansion method®®.
In particular, in the all-electron mixed-basis method, not
only valence AOs but also core AOs are incorporated to
describe all-electrons without using pseudopotentials.
Historically, all-electron mixed basis method was first
formulated by Bendt and Zunger®, who incorporated
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just core AOs in the PW-expansion method. However,
the method®®? used in the present study is independent
and different from Bendt and Zunger’s, because ours
incorporates also valence AOs in the basis set. Although
the number of basis functions 7,4 needed for describing
the electronic states with the same accuracy reduces sig-
nificantly by using the mixed-basis, the computational
load still increases as ni.gs, and there is a limitation in the
application of the all-electron mixed-basis approach both
in the system size and in the simulation time period, as is
similar to other ab initio methods. When 7. becomes
order of 10% the usual matrix diagonalization by
means of, for example, Householder’s method, becomes
quite time consuming and the use of alternative al-
gorithms is inevitable.

One of the efficient algorithms to solve the self-con-
sistent Kohn-Sham equation is the conjugate gradient
(CG) method®", The present paper deals, for the first
time, with the incorporation of the CG method in the
all-electron mixed-basis approach. As an example we will
present a result on the structural optimization of Cu,,
which is the simplest nontrivial transition-metal cluster
and can be treated with a spin-unpolarized calculation.

The paper is organized as follows: In Section 2, the CG
method that is used in the present study is explained in
detail. The comparison with the steepest descent (SD)
method and the numerical result for Cuy is presented in
Section 3. Lastly, Section 4 is devoted to the summary.

II. Level-to-Level CG Method

1. SD method

Before going into the explanation of the CG method,
let us consider first the easiest SD method. The SD
method is to move the electronic states toward the SD
direction in the energy surface. The time evolution equ-
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ation for the SD method reads®®

u ‘Z_y:i=Ci; )

with
&= —(H= )i, 2

and
A=y Hly. (©))

Here  is the wavefunction of the ith level, H the
Hamiltonian, {; the SD direction, and A; the energy ex-
pectation value. The time derivative of the above equa-
tion is replaced by a finite difference,

dyi_y(t+At)—yi(1)
dt At )

4

2. CG method

The CG method is a related but more elaborate
method in which electronic states are converged more
quickly towards the eigenstates. In this method, the
eigenstates are searched in the direction that is conjugate
to all previous directions. If the energy surface is purely
parabolic, it is guaranteed that the minimum is reached
after only two iterations; see Fig. 1. We adopt here the
level-to-level optimization first proposed by Payne et
al.® Single level is updated twice by this method com-
bined with the line minimization described below sub-
section 3. (For the line minimization, Payne et al. have
proposed a way to calculate the second derivative of the
total energy with respect to the change in the conjugate
direction of the wavefunctions. However, this requires
recomputation of the total energy at each change of one
electronic level and becomes heavy if the number of
electronic levels increases. In place of using their tech-
nique, here we will adopt an alternative method
proposed by King-Smith and Vanderbilt®”.) When one
special level is optimized, wavefunctions of all the other
levels are held fixed. After this optimization for one
special level finishes, similar optimizations are performed
one-by-one for all levels. Since these optimizations are
independent for every level, the resulting wavefunctions
are not mutually consistent. In order to improve this
consistency, the same procedure is repeated five times

Fig. 1 Schematic illustration of steepest descent (SD) and conjugate
gradient (CG) methods of convergence to the center of anisotropic
harmonic potential. SD method requires many steps to converge. CG
method allows complete convergence only in two steps.
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with a fixed Hamiltonian. Finally, in order to achieve the
full self-consistency of the Kohn-Sham equation, the
whole process is repeated with updating the charge den-
sity, potential and Hamiltonian. Hereafter, we will call
this whole process updating once the charge density, etc.
‘“one iteration’’. In our later application to the structural
optimization of a Cu, cluster, we will perform enough
iterations, until the difference between the total energies
at subsequent steps becomes smaller than 1.0x 107
Hartree. Now we explain the single-level optimization®.
Let us assume that the ith level is optimized and all the
other levels are fixed. First, in order to make the SD
direction {; orthogonal to all the states y;, we calculate

"= = 2wl — w1 O, )
j=i
where the superscript m denotes the iteration index;
m=1, 2.
Then we introduce the function ¢* (m=1, 2) defined
by

ol'=¢"+yl ol ©
with y}=0 and
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Finally, the CG direction ¢;” is obtained by or-
thonormalizing ¢;™ as follows:

o "=yl o7 wT ®)

m o!"
i = n”m rmy ° 9
¢ ool ™> ©)

3. Line minimization

Once the CG direction is determined in the way ex-
plained in the previous section, it is necessary to deter-
mine the new wavefunction as

yit =yl +Boi", (10)

where o and £ should be determined so as to minimize
the total energy. This procedure is called the line
minimization. This is not straightforward when the
Hamiltonian depends explicitly on the wavefunctions
and the minimum of the total energy has to be deter-
mined self-consistently. However, if the Hamiltonian is
fixed and only the ith eigenvalue A; has to be minimized,
the line minimization can be rewritten in a 2 X 2 matrix
eigenvalue problem”:

{p:\Hl ;) <(0i|H“//i>)(ai)= (01)
((WiIH|¢i> <wilHly:>)\ bs A b (1n

and « and f are obtained as the elements a- and b of
the eigenvector corresponding to the smaller eigenvalue
A-.

III. Results

First, we compare the results of CG and SD methods.
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At once, we calculated eigenvalue and eigenvector self-
consistency. Using the same atomic positions (held fixed)
and the same Hamiltonian (also held fixed), we applied
separately CG and SD methods to obtain the ground
state for the electronic states of Cuy. The cutoff energy
for PW’s is chosen as 7.6 Ry. Moreover, 1s, 2s, 2p, 3s, 3p
AOQ?’s are used directly from the atomic code, and 3d AO
is also used but modified from that of an isolated atom,
i.e., it is truncated by subtracting a smooth quadratic
function which has the same value and the same slope at
the cutoff radius r., which is the radius of the nonover-
lapping atomic sphere defined at the outset. The result of
the calculation is shown in Fig. 2. Here, the abscissa is
the iteration number n and the ordinate is the difference
of the total energy, A E. The absolute minimum of the
total energy, which is used as a reference energy, is de-
termined by extrapolating the total energy as a function
of 1/n in the limit 1/7—0. From Fig. 2, the result of the
CG method (solid curve) converges much faster than the
result of the SD method (broken curve). In this Figure,
the result of the CG method seems to converge already
after 10 iterations (n=10). However, if we draw the be-
havior of 4 E in a log-log scale as in Fig. 3, the electronic
states still move steadily toward the energy minimum.
From this result, we can conclude that the CG method
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works well also in the all-electron mixed-basis program.
Next, we carried out the structural optimization of Cuy
by using the CG method for the electronic state conver-
gence. Also the same all-electron mixed-basis code was
used. For the atomic motion, a simple SD algorithm was
adopted for simplicity, although the convergence of the
atomic position was rather slow. The result is shown in
Fig. 4. Although we do not insist any distortion, the in-
itial structure starts distorting spontaneously. We used
the same cutoff energy for PW’s and the same set of
AOQ’s as above. We start from the ideal square of 0.24
nm X 0.24 nm. Concerning the total energy, it decreases
monotonically toward the 450th step, and has a local
minimum there. Although there is slight humps in the
total energy around the 300th and 650th steps, the total
energy decreases almost monotonically everywhere.
Around the 1500th step, the total energy seems to con-
verge well. On the other hand, for the atomic positions,
the ideal square becomes rectangular at first. The shorter
bond in this rectangle decreases monotonically toward
the 600th step and then increases again. They converge to
0.236-0.237 nm. On the other hand, one of the diagonal
bonds increases monotonically and the other one
decreases monotonically. Both of them converge around
the 1600th step and the resulting shape is a rhombus.
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Fig. 2 Error in the total energy of Cu, vs iteration number by CG
(solid curve) and SD methods (broken curve).
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Fig. 3 Log-scale error in the total energy of Cu, vs iteration number
by CG method (solid curve).
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Fig. 4 Total energy of Cu, (top); the bond lengths between two Cu
atoms, which are indicated by a pair of integers followed by an arrow
(bottom) vs atomic iteration number. Starting position of Cu, is il-
lustrated on top picture. The arrows show the axis direction. The
““Step”’ in the abscissa denotes the step-number of updating atomic
positions. Before each update of atomic positions, enough iterations
are performed for the convergence of the electronic structure by
means of the present CG method.
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IV. Summary

In this paper, we have implemented the CG method in
our all-electron mixed-basis program and found that the
convergence of the electronic states is much improved by
using the CG method compared to the SD method. We
have shown a result of the CG for the case of Cu,.

In order to speed up the atomic relaxation, it is
desirable to introduce a more efficient algorithm also for
the updations of atomic positions. We are now trying to
implement the Broyden method®® for that purpose.
Also the Broyden method can be used to mix the elec-
tronic charge density of previous steps appropriately.
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