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Transition behaviors from linear to nonlinear viscoelasticity under constant strain-rate deformation near the glass transition have been
investigated for Pd- and Zr-based alloy glasses. The transition occurs at critical strain-rate, and the steady-state viscosity may decrease by many
orders of magnitude above the critical strain-rate. Concurrently with the transition, the growth of the stress shows a stress-overshoot; the stress
increases initially attaining a maximum, then decreases and attains a steady-state flow. The transition between steady-state Newtonian and
non-Newtonian flows can be analyzed by a stretched exponent relaxation function, and both the normalized viscosity and the flow stress can
be represented by a master curve in terms of the product of the strain-rate and the Newtonian viscosity. These results imply that the occurrence
of the transition from the Newtonian to non-Newtonian is explicitly determined by the flow stress. A model, based on the hypothesis of stress-
induced structural relaxation and the concept of fictive stress for the nonlinear viscoelastic behaviors has been proposed. The model calculation
has reproduced fairly well the experimental results of the Pd- and Zr-based glasses, in particular, the development of the stress-overshoot
behavior. In addition, the model reveals a stress-overshoot and under-shoot oscillation at very high strain-rate. This oscillatory nonlinear
behavior has been observed in many polymer solutions, and also the latest study in metallic glasses. The model calculations of other nonlinear
viscoelastic behaviors, such as stress relaxation during stress growth after abrupt cessation of steady-state flow, and a stress regrowth after a

brief interval of relaxation, are also presented.
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1. Introduction

A number of alloy systems, such as Pd-Ni-P, Pd—Cu-Si,
and Pt-Ni-P have been known for sometimes as very easy
glass formers.) Recently Ln-Al-TM, Zr-Al-TM, Hf-Al-
TM, and Mg-TM-Ln have been found to form a glass eas-
ily.?) Here TM stands for transition metals Fe, Co, Ni, and
Cu. These alloys can be cast into a bulk glass form from a
melt at cooling rates as low as 10 K/s, and the glasses show
a wide supercooled liquid region before crystallization. The
high stability and fluidity of these glass alloys opens the possi-
bility of forming bulk materials of various shapes, at elevated
temperatures with straightforward processes, such as casting,
forging, extrusion and consolidation. The Newtonian viscosi-
ties, 7N, near Ty, obtained from creep measurements at a suf-
ficiently low stress, have been reported for metallic glasses
firstly for Au—Ge-Si® and Pd-Si,* then for a number of alloy
glasses.>” The temperature dependence of 7y of many stable
glasses has also been extracted from the rates of thermal trans-
formations.® Over a broad temperature range in the region
of the glass transition, the viscosity, ny, of metallic glasses
as well as many non-metallic glasses increases rapidly in the
range 10°-10'3Pa-s and is described by the Vogel-Fulcher-
Tammann (VFT) expression, nv = noexplQ/(T — Tp)],
where Tp is the VFT temperature. When the flow stress is
sufficiently high, however, the viscosity of metallic glasses
becomes non-Newtonian.

The ViSCOSity of Pd4()Ni10Cll3()P20 and ZI'55A110Ni5 Cll309’ 10)
alloy glasses near T, has been investigated recently as a func-
tion of temperature and strain rate under compression. The
steady-state viscosity of glass at a given temperature remains
constant at low strain rate, &, and decreases above a critical
strain rate ., indicating Newtonian to non-Newtonian flow.
The viscosity, 7, may decrease by many orders of magni-

tude. The growth of stress, o, at strain rate ¢ < &; follows
a linear viscoelastic behavior which predicts a monotonic in-
crease of the asymptotic value 0 = 37né. However if
&(>&,) is sufficiently high to create a non-Newtonian regime,
it shows a stress-overshoot: o increases initially attaining
a maximum, then decreases and attains a steady-state flow
value, or. The stress-overshoot, a nonlinear viscoelastic be-
havior is commonly observed in polymers'? and some inor-
ganic glasses.!? The critical strain-rate, &, strongly depends
on temperature, and inversely scales to Newtonian viscosity,
nn. A master curve for a glass alloy in terms of the viscosity
ratio, 7¢/7nN. and the product, nné, of the Newtonian viscos-
ity and strain rate has been constructed. The flow stress, oy,
can be represented by a master curve in terms of the prod-
uct, nné. The flow stress, of, increases proportionally with
strain rate in the Newtonian regime and tends to flatten out at
a high strain rate in the non-Newtonian regime. A relaxation
model is proposed and the master curves are fitted with a sim-
ple stress relaxation function of the form, 1 —exp[—(1/#;7)%],
where #; is a time constant, y the shear rate and § the KWW
stretched exponent. The general feature of this nonlinear be-
havior of stress-overshoot can be understood quantitatively in
terms of molecular theory!® in which non-Newtonian flow
is attributed to the reduction in concentration of entangle-
ment coupling with increasing rate. In the non-Newtonian
regime, a stress-overshoot exists because initially the struc-
tural breakdown processes, governed by Newtonian flow, are
much slower than the shear relaxation governing the steady-
state viscosity. Recent computer simulations'> ¥ of Lennard-
Jones glasses reveal that the shearing action changes the lig-
uid directionality facilitating flow and reducing viscosity, and
causes an overshoot in the stress versus strain curve in the
non-Newtonian regime.

A general theory, regardless of differences in molecu-
lar structures among glassy polymers, inorganic glasses and
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atomic metallic glasses, is that there exists a steady-state flow
structure of a liquid corresponding to a given strain rate and
stress. Specifically, there exists a corresponding normalized
viscosity, n¢/ny, or relaxation time, Ag/AN, to a given steady-
state flow stress, o, in a liquid. Here subscripts f and N
stand for steady-state flow at constant strain rate (or a con-
stant stress) and Newtonian flow, respectively. We hereby
introduce an additional structural parameter, a fictive stress,
o¢, analogous to fictive temperature, 7. In other words, we
introduce relaxation time or the nonlinear dependence of re-
laxation time to change in the stress-induced structure. In
this paper, we propose a model for nonlinear viscoelastic re-
laxation based on the hypothesis of stress-induced structural
relaxation and the concepts of fictive stress.!® Our model cal-
culation reproduces the experimental result of the Pd-based
and Zr-based glass alloys fairly well, in particular, the devel-
opment of stress-overshoot behavior. In addition, the model
reveals a stress-overshoot and stress-undershoot oscillation
at very high strain rate. This oscillatory nonlinear behavior
has been observed in many polymer solutions,!>!® and in
metallic glasses.” The model calculation of other nonlinear
viscoelastic behaviors, such as stress-relaxation during stress
growth, after abrupt cessation of steady-state flow and a stress
regrowth after a brief interval of relaxation are also presented.

2. Experimental Procedures and Results

Alloy ingots were prepared by arc melting pure metals
in a purified argon atmosphere. Cylindrical samples of a
Pd4oNijoCusgPa0 and a Zrss AljoNisCusg alloy glasses 2 mm
in diameter were obtained by melt casting into a copper mold.
Glassy structure of the cast samples was confirmed by X-ray
diffraction. Thermal properties were measured by differen-
tial scanning calorimetry (DSC). The onset of the glass tran-
sition temperature, T, and the onset of crystallization were
determined at 0.33 K/s to be 575 and 655K for the Pd-based
alloy glass and 680 and 758 K for the Zr-based alloy glass,
respectively. For a compressive mechanical test, cylindrical
samples 2 mm in diameter x4 mm in length, were cut from
the cast glass alloy and the surfaces were polished parallel.
The compression tests were conducted using an Instron type
machine.

2.1 Pd4()Ni10Cll30P20 glass

Figure 1 shows the strain-rate dependence of the stress-
strain curves at 7' = 573 K. At low strain rate, ¢ < 1 x
1073 s~1, the stress, o, increases monotonically with strain,
e, and attains a steady-state flow stress, or. At high strain
rate, ¢ > 5 x 1073571, o increases initially attaining a max-
imum value at strain, ¢ ~ 6 x 1072, It then decreases and
attains a steady-state value for ¢ > 10 x 107>, The steady-
state viscosity, 7;(= o¢/3¢), was thus obtained. The strain
rate dependence of viscosity, n¢, and flow stress, oy, are il-
lustrated in Figs. 2(a) and on 2(b), respectively. As shown
in Fig. 2(a), ns remains constant for ¢ < &. and then de-
creases drastically for ¢ > &.. At much higher £, log 9 vs.
log¢ curves show a slope of —1. We define here the criti-
cal strain rate, £, at the intersection of viscosity 7¢(¢) lines
in the low and high ¢ regime. The term &, is also the crit-
ical strain rate, above which the stress-strain curves show a
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Fig. 1 The stress, o, versus strain, €, curves for the Pd-based alloy glass
subjected to various strain rate, &, at T = 573 K.
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Fig. 2 The strain rate, ¢, dependence of viscosity, 7t (a), and flow stress, of
(b), at various temperatures: 568 K (O), 573 K (W), 578 K ({), 583K (A)
and 588 K (7). The term, &, is the critical strain rate at the intersection of
two viscosity lines.

stress-overshoot (Fig. 1). The Newtonian viscosity, 7y, de-
creases by two orders of magnitude from ~ 3 x 10!! Pa-s at
T = 568K to 2 x 10°Pa-s at T = 588K, and the critical
strain rate, &, appears vary nearly inversely proportional to
7, from 2 x 107#s7! to 3 x 1072571, The corresponding
strain-rate dependence of flow stress, o¢(= 3£7¢), is shown in
Fig. 2(b). The flow stress, oy, increases linearly with ¢ initially
then deviates from the linearity and attains a plateau at £ > &.
It may be noted that for the temperature range studied at very
high strain rate, e.g., &€ > 5x 1072 571, the viscosities and flow
stresses tend to merge together and vary slightly with temper-
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Fig. 3 The normalized viscosity, nr/nn (a), and the flow stress, of (b) ver-
sus 7N ¢, the product of Newtonian viscosity, 7N, and strain rate, £, at vari-
ous temperatures: 568 K (), 573 K (M), 578 K (¢), 583 K (A) and 588 K
(V). The temperature dependence of 7y is shown in the insert.
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Fig. 4 Master curves of the normalized viscosity, n¢/nn (2) and flow stress,
ot (b) in terms of the product, nné, at T = 758 K. Shift factors, ar, are
shown in the insert. The curves are fitted with a relaxation function of the
form, 1 — exp(—1/1¢), with the time constant r, = 180s.

ature in contrast with the large change in the Newtonian vis-
cosity, nn. The limiting maximum flow stress, o*, decreases
slightly with increasing temperature from 3.8 x 10%Pa-s at
T =568Kto2.1x 10%Pasat T = 588K.

The normalized viscosity, n¢/7n, and the flow stress, o,
plotted against the product, nné of strain rate and Newtonian
viscosity are shown in Figs. 3(a) and (b), respectively. The
temperature dependence of the viscosity, 7y, is shown in the
insert. The viscosity ny = noexp[Q/kT] with no = 3.75 x
10~*#Pa-s and Q0 ~ 5eV. As shown in Figs. 3(a) and (b),
nt/1x and oy in the Newtonian regime, i.e., nné > 108 Pa,
decrease with increasing temperature. By horizontal shift the
log(ne/nn) vs log(nné) curves to T = 578 K, a master curve
is obtained as shown in Fig. 4(a). The shift factors, ar, are
shown in the insert. As stated previously, at high nné, the
log(ns/nn) vs log(nné - at) curve shows a slope of —1. Using
the same shift factors, we are able to obtain a master curve
in terms of oy - ar and nné - ar shown in Fig. 4(b). Since
log(ot - ar) = log(nné - at) = log(ne/nn) +1og(nné - ar), in
fact, the shape of log(n;/nn) vs log(nné - ar) and log(os - at)
vs log(nné - ar) master curves are identical upon rotating each
other by 45°.

2.2 ersAlloNi5CU3() glass

Figure 5 shows the strain-rate dependence of stress-strain
curves (S-S curves) at T = 680K. We defined here a true
compressive stress o = (F/A)(1 + Al/lp), and a true com-
pressive strain e = —(Al/lp)(1—Al/lp), where Al =1-1y <
0, where F is applied force and A is an initial cross-section
area. A correction for the length change, Al, was made by as-
suming the alloy to be an incompressive liquid. At low strain-
rates, & < 1.0 x 1073 571, the stress increased monotonically
with strain and attained a steady-state flow stress, or. On the
other hand, at high strain-rates & > 5.0 x 1072 s71, the stress
increased to a maximum value, then decreased and attained
an almost steady value of or. This phenomenon is known as
stress-overshoot. It has been observed in both compression®”
and tension'”-® modes.

The strain-rate dependence of o and the steady-state vis-
cosity, ne(= o¢/3¢), are illustrated in Figs. 6(a) and (b), re-
spectively. At a given temperature, oy increased monoton-
ically with increasing strain-rate, and attained an approxi-
mately constant flow stress, o*, at high strain-rates, where
the stress-overshoot phenomenon appeared. This relationship
corresponds to Newtonian viscous-flow at the lower strain-
rates and non-Newtonian viscous-flow at the higher ones. The
Newtonian viscosity, 7n, decreased by one order of magni-
tude from ~ 1 x 10?Pas at T = 670K to 1 x 10'! Pa-s at
T = 690 K. The temperature range in the present experiments
was not enough to apply the Vogel-Fulcher-Tammann (VFT)
type formula. If an Arrhenius type equation is applied, the
Newtonian viscosity is given by ny = noexp[Q/kT] with
Mo = 2.9 x 107*"Pa-s and Q ~ 5eV. It is noted that at very
high strain-rates of & > 3 x 1072s™!, n¢ and oy in the non-
linear regime tended to merge together and become almost
independent of temperature in contrast with their strong de-
pendence on temperature in the linear regime. The maximum
flow-stress, o*, decreases slightly with increasing tempera-
ture from 6 x 108 Paat T = 660K to4x 108 Paat T = 690 K.

To demonstrate the relationship between 7y and €, the nor-
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Fig. 5 Stress-Strain curves of the Zr-based alloy glass at various strain rates
in a temperature of 680 K.
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malized viscosity, n¢/7nn, and or were plotted against nné,
the product of the strain rate and the Newtonian viscosity, as
shown in Figs. 7(a) and (b), respectively. n;/nn decreased
with increasing temperature in the non-Newtonian regime,
nné > 3 x 10" Pa. n¢/nx and of at the corresponding nné
are lower at higher temperature. By horizontal shift of the
log(ne/nn) versus log(nné) curves to that at T = 680K, a
master curve was obtained as illustrated in Fig. 8(a). The shift
factors, ar, are shown in the insert. Using the same shift fac-
tors, we were able to obtain a master curve in terms of or and
nné as shown in Fig. 8(b).
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2.3 Stress Relaxation Functions

When a visoelastic material is deformed at a constant shear
rate, y, at first the stress rises linearly with time, ¢
G - vt = Gy (1), as a liquid takes time to respond struc-
turally. Since a liquid will not support a static stress, it
flows and the rate of increase of the stress decreases. It at-
tains a limiting steady-state value, 7 = GoANY = NNV,
where Ay is the Newtonian shear relaxation time. In the-
ory then, the strain rate is increases without limit, then 7
will also become higher without limit. However, the stress
will reach a critical level, 7., at which a substantial struc-
tural breakdown takes place. For example, the initial coop-
erative domains may break down, or the shear reorganizes the
liquid directionally to facilitate the flow. The new structure
has a shorter relaxation time A’ < AN, 7. = GooA'y and,
Nt = 7./y = GoX < nn. Appreciable decreases in vis-
cosity, i.e., non-Newtonian flow, will be observed. Ideally
the structure of the liquid changes through relaxation even at
low strain rate and flow stress. It is at a critical stress, T,
that an appreciable deviation in 7¢ from the Newtonian flow
is observable. With a further increase in strain rate, structure
changes further and the viscosity, 7¢, and the shear relaxation
time, A’ decrease accordingly while the flow shear stress,
T, may increase slightly. The steady-state stress asymptot-
ically approaches a maximum at very high shear rate. The
limiting stress, T*, may be interpreted as the actual cohe-
sive strength of the materials. The maximum elastic shear
strain, ¥ = t*/ G, which the liquid can support, is thus a
characteristic of materials and may depend slightly on atomic
configuration of the liquid. The maximum flow strength, v*,
in general, is several times smaller than the ultimate fracture
strength of the solid glass, 7, the fracture strength of a glass
when y > Ay’

We arrived at two end conditions for the flow stress,

Y < Te/GoorN < T/ GooAn,
(1a)

(1b)

The conditions set forth above can be approximated by,

7s = GooAny = qny  for

L, =T " Z Gy, for y > 1"/Guln.
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considering the relaxation mechanism for the non-Newtonian
flow proposed above, a simple stress relaxation function,

7, = 'yl —exp(—(1/17)P)], (2a)

and

ne/mx = 1 —exp[—(1/1,7)P)], (2b)

where f; = GooAn/T* = An/yS. We found the Young’s
modulus of the Pd-based glass, Exc = 3G ~ 5 x 10'°Pa
and estimated the maximum elastic strain of the liquid, ¥} =
7%/ Goo ~ v/30%/Eo = 1072, Similarity for the Zr-based
glass, Eoo &~ 8 x 101°Pa and y* ~ 1072. The experimen-
tal data are fitted with eqs. (2a) and (2b) for the Pd-based
glass with 8 = 1 and for the Zr-based glass with 8 = 0.96
and shown in Figs. 4 and 8, respectively. In the fitting, we
adopt compressive stress, oy, and compressive strain rate, £,
in place of r and y in eqs. (2a) and (2b). It simply effects
upon the time constant, #;, accordingly. The agreements are
very satisfactory.

Taking n¢/mny = A¢/An and of/c™
eqs. (2a) and (2b), we arrived at,

ot/o* = (t¢/tn) - [—In(1 — 7¢/T) 7. 3

Equation (3) fits very well with the experimental data of Kato
et al.>'9 for the Pd-based alloy glass with 8 = 1.0 Zr-based
alloy glass with 8 = 0.96 as shown in Figs. 9(a) and (b), re-
spectively. A¢/An remains nearly constant for or/o* < 1/4
and decreases rapidly approaching zero as oy/o* approach-
ing 1. To avoid a singularity at ot/o* = 1 for the Pd-based
alloy glass, we adopt a linear extension of eq. (3) with the
expression In(A¢/AN) = a + b - In(ot/o*) for o¢/o* > 0.95
(Fig. 9(a)).

7t/T*, combing

3. Stress-Induced Structural Relaxation and the Con-
cept of Fictive Stress

In theoretical and experimental studies on some polymer
systems,!15:16) it has been shown that an entanglement plays
an important role in the flow and melts. At high shear-rates,

(b)
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Fig. 9 The relationship between the normalized relaxation time, A¢/AN, versus the normalized flow stress, o¢/c* of the PdaoNijoCusoP20
alloy glass (a), and of ZrssAl;joNisCuszg alloy glass (b). The solid curve is the theoretical fit of eq. (3).
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a time required to form entanglements is longer than a tran-
sit time of a group of segments over a potential entanglement
site. Hence, entanglements do not have enough time to form
and viscosity decreases. Concurrently, the initial structure
is broken down, and a new steady-state structure is created,
in which the time to form entanglements is comparable to
the transit time. It is a reconfiguration of entanglements that
causes the non-Newtonian flow. The theories predict that the
non-Newtonian viscosity at very high strain-rates follows a
power law, i.e. n; ~ y~" with n = 6/7'> and 3/4,'® where
7(= +/3%) is a shear rate. On the other hand, glassy alloy
does not have complex structures, such as entanglements in
polymer melts. The supercooled liquid of glassy alloy has
simple atomic structure with clusters, so that the distribution
of relaxation times is very narrow. The power-law parameter
n is approximately 0.96 in the Zr-based alloy and 1.0 in the
Pd-based alloy for instance.”!? Recent computer simulations
in Lennard-Jones glasses'>!'® reveal that structure changes
occur even in a simple liquid by the shear action. The changes
are reorganization of the liquid directionality, and this behav-
ior results in facilitation of the viscous flow. The steady-state
shear stress, 7;(= o0t/+/3), approaches asymptotically to a
maximum value, t*, at very high shear-rates. A general the-
ory, regardless of differences in molecular structures among
glass polymers, inorganic glasses and atomic metallic glasses,
is that there exists a steady-state flow structure of a liquid cor-
responding to a given strain rate and stress. As seen in Fig. 9,
there exists a corresponding normalized viscosity, ns/nn, or
relaxation time, Af/An, to a given steady-state flow stress, oy,
in a liquid. We hereby introduce an additional structural pa-
rameter, a fictive stress, or, analogous to fictive temperature,
Tt. In other words, we introduce relaxation time or the nonlin-
ear dependence of the relaxation time to change in the stress-
induced structure.

4. TFictive Stress and Model Calculations

Considering a simple Maxwell Model, under tension (or
compression), the stress relaxation equation is given by,

6 =Eé——,

)‘ﬁc

where o, ¢, Ag. and E are stress, strain, fictive relaxation time
and Young’s modulus respectively, and ¢ and ¢ are stress
and strain rates, respectively. The relaxation time, Ag., de-
pends on fictive stress, og.. For constant strain rate, &, and
in Newtonian flow regime, Asc = Af = An and the vis-
cosity ny = EAn/3 is constant. The solution of eq. (4) is
o(t) = EAnE[]l — exp(—t/An)]. o () increases monotoni-
cally and attains a steady-state value, where we deal with a
linear viscoelastic system. In non-linear viscoelastic regime,
a sudden change in the magnitude of stress results in changing
in some physical properties e.g., causing elastic deformation,
but it does not change the liquid structure and thus various re-
laxation times at = 0, but it will be followed by its evolution
to a new equilibrium structure and relaxation times. The rate

of equilibrium for fictive stress, ogc = o, is

dot/dt = (0 — 07)/Asic, %)

where A is the time constant of structural relaxation (it may

C))
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differ from the relaxation time for shear, 7¢, but is proportional
to 7y and a function of o). For present calculations, we take
Aie = As. To facilitate the computation, we rewrite eq. (3) for
Ae/AN as,

dig/dt = (Ax/0™) - f(At/An) - dog/dt, (6a)

(1 —x)[—In(1 — x)]} TP
fx) = .

1—x)[-In(1-x)]—x
Computations using egs. (4), (5) and (6), the stress-strain
curves for Pd-based glass with 8 = 1.0 at T = 573K at
various strain rates, &, are shown in Fig. 10. In the calcu-
lations, the Young’s modulus £ = 20 GPa, taking from the
initial slope in & vs. & curve for ¢ = 5.0 x 1072571 (Fig. 1),
o* = 280MPa and Ay = 3s. Here we take Aq. = kXA with
k = 1. At low strain rate, & = 1.0 x 107357}, the flow is
Newtonian and As = Ay remains constant. At slightly higher
& =22x1073s"1, o appears to increase monotonically with
e. A close examination, however, reveals o deviated from a
linear viscoelastic behavior. As shown in Fig. 10(c), the relax-
ation time As decreases from 3's and attains a constant value
of ~2.75s for ¢ > 4 x 1072, Correspondingly, o7 (Fig. 10(b))
lags behind o slightly in a regime for & < 4 x 1072 The de-
viation from a linear viscoelastic behavior showing a slight
stress-overshoot can also be seen in the corresponding ex-

(6b)
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Fig. 10 The calculated stress growth of the Pd-based alloy glass corre-
sponding to Fig. 1, stress, o (a), fictive stress, of (b), and relaxation time,
Af (€).
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Fig. 11 The relationship among o, ot and Ay in the stress growth process.

perimental data shown in Fig. 1. At higher rate of strain
& = 5.0 x 107357, the model calculation reveals stress-
overshoot as observed in metallic glasses under both com-
pression and tension. Initially, the fictive stress of lags behind
o,i.e,0—o; > 0,fore <5.0x 107257}, and finally merges
with o in the steady state. The corresponding relaxation time,
A, decreases from 3 s to 1.8s. At sufficiently high strain rate,
as exemplified for é = 1.0 x 107257} and 2.2 x 107257},
there is a larger overshoot followed by an undershoot and an
indication of oscillation. This oscillatory behavior is often
seen in polymer solutions'>'® and the latest measurement on
the Zr-based glass.”

The relationship between o, or and corresponding A is il-
lustrated more clearly in Fig. 11. At the beginning of the
flow, or remains nearly constant and increases gradually, lag-
ging behind o which grows almost linearly with ¢. The re-
laxation constant, Af, remains nearly constant as A is nearly
constant for or < 0*/4 = 70 MPa. When oy > 70MPa or
g ~ 2.0 x 1072, A¢ decreases and the flow becomes non-
linear, and the rate of stress growth ¢ becomes slower than
that expected from linear viscoelasticity conditions. While
the stress growth rate ¢ decreases as the last term in eq. (4),
o /A¢ increases, but the growth rate of fictive stress or as seen
by eq. (5) can either increase or decrease. Thus the existence
of stress-overshoot cannot be predicted without model com-
putation. It may be noted however, that nonlinear viscoelas-
tic behavior is observed only when oy, and thus o, exceeds
a value of 0*/4 = 70 MPa because below this value, Ar is
nearly constant. In the present case of & = 2.2 x 1072571,
with increasing ¢, the stress o grows continuously, attaining
a maximum. It then decreases rapidly, while the fictive stress
ot grows rapidly. When o and o intersect, o according to
eq. (5) decreases and takes a sharp turn, but ¢ continues its
descent. The flow stress, o, goes through stress-undershoot
and then overshoot. It crosses over oy a number of times and
finally attains a steady-state value. Accordingly, the relax-
ation time, A, oscillates in the opposite direction to o.

The model calculation of nonlinear viscoelastic behavior,
in particular, the stress growth dependence on strain rates and
temperatures, agrees well quantitatively with the experimen-
tal results (see Figs. 1 and 5), though the model tends to un-
derestimate the degree of nonlinearity at the commencement
of the linear to nonlinear transition. The model reveals that

603

800 |
: (a)

£=2,2X107%7"

o 0~
[~ —)
[ = <]
LA IR |

Refaxation

is started

£=2.2X107%™

.

[=3
o

]

1
1
\

< Relaxation

7
-
-~

T\ ¢ —o

—~

< E- (223
(=4
o
T

Stress, ¢ /MPa

'
1
'
[l
Il
1
'
i
1
1
1
Il
1
]
i
1
@

)

400

200 300 7500 600
Time, t/s

0 100

(b)

is started
e

1

!
1

\
Iy
|
\

b--

~—— Relaxation

Stress, o /MPa

Redeformation
\ at £=2.2%107%"
\\l/
L..r-.-.._LJU'léu PO PR
100 150 200 250
Time, t/s

1
i
D
'
1
'
1]
]
«
n
]
1]
1
]
1
T
]
]
]
1
]
'
1
i
]
i
]

I
1
1
{
I
I
I

300

Fig. 12 The experimental (a) and model calculation (b) of a stress regrowth
after abrupt cessation of steady-state flow.

the peak position of the stress-overshoot appears at around
& = 3x 1072 and shifts slightly with strain rate, £, to higher ¢,
however the experimental data show all the peak positions oc-
curring near ¢ = 5x 1072, The shift in the peak position of the
overshoot with ¢, is consistent with that observed in polymer
glasses.?? The model calculation reveals the stress-overshoot-
undershoot oscillatory behavior which has been observed in
many polymer solutions and in metallic glasses.

In the following, we perform viscoelastic deformations of
complex step tests with the model and investigate structure
change during deformations.?? In this study, a multicompo-
nent ZrssAl1oNisCusg glass alloy (T; = 680K at a heating
rate of 0.33 K/s) was chosen for the experimental test because
of its high thermal stability. The dependence of A¢/Ax and
og/o* on ¢ at various temperatures can be expressed in a
stretched exponential relaxation form, eq. (3) with 8 = 0.96
(Fig. 9(b)).

As in the case of the Pd-based alloy glass, model calcula-
tions are made using egs. (4), (5) and (6) for Zrs5s Al;oNisCuso
glassy alloy at 7 = 670 K. In the calculations, £ and Ay are
20 GPa and 26 s tespectively,?? according to the experimental
results. The stretched exponent 8 = 0.96 is determined for
the Zr-based alloy glass. Figures 12(a) and (b) show the ex-
perimental data and model calculations of the Zr-based glass
subjected to an initial deformation of the nonlinear viscoelas-
tic regime at &£ = 2.2 x 1073 s~ until o attains a steady-state
value, then stress relaxed at the static strain for various time.
It was followed by redeformation at the same strain rate. As
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Fig. 13 The experimental (a) and model calculation of stress growth of
sudden switch of & from 7.0 x 10™* s~ t0 2.2 x 1073 s~! at various .

seen in Figs. 12(a) and (b), the longer is the time for a static
stress relaxation, the larger is the stress growth of a stress
overshoot. The stress growth of the most relaxed sample is
nearly the same as that of the starting sample. In contrast
with this behavior, the steady-state flow stress is independent
of time for the static stress relaxation, i.e., of ~ 380 MPa.
The curves calculated with this model agree well qualita-
tively as well as quantitatively. It should be noted that these
curves exhibit a large stress overshoot which is followed by
a stress undershoot and then exhibit oscillatory behavior in
the S-S curves. During the static stress relaxation, both o
and og. decrease and deviate from the steady-state flow stress,
or ~ 380MPa. The degree of structural relaxation indicated
by osc. depends on the duration of the static state. After a
sufficiently long waiting time >> Ay, the structure returns to
a static equilibrium (linear) state at T = 670 K. Following
constant strain-rate deformation, a stress overshoot appears
again. The stress growth depends on the degree of structural
recovery to the static equilibrium state during the static stress
relaxation. A well-relaxed structure, as indicated by o5, — 0,
must change significantly to reach the steady-state flow struc-
ture. As a result, the stress growth becomes large. The re-
laxation time of the static stress relaxation is underestimated
because A¢ may be different from A under a static condition.

Figures 13(a) and (b) show respectively the experimental
and model S-S curves for the Zr-based glass subjected to de-
formation at ¢ = 7 x 10™*s™! up to various strains, then the
& is switched to a higher value of 2.2 x 1073571, As shown
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in Figs. 13(a) and (b), the smaller is the strain at which the
strain rate switches from 7.0 x 107*s7! t0 2.2 x 1073571,
the larger is the stress growth of the stress-overshoot phe-
nomenon. In all cases, the steady-state flow stress of each
curve merges to ~380 MPa. These behaviors performed in
accordance with the model are shown in Fig. 13(b), and the
structure change expressed with the fictive stress and the re-
laxation time related to the stress during the test, e.g., the
switch from & = 7.0x 10™*s 1 t02.2x 103 sl ate = 0.10,
are shown in Fig. 14. The stress growth of the stress overshoot
depends on the value of oy, at which the strain rate switches
from 7.0 x 10~* 571 t0 2.2 x 1073 s~! and o;. The smaller the
o at the time of the switch, the larger the stress overshoot.

5. Conclusion

The deformation of glassy alloys around T is viscoelas-
tic basically depending on both temperature and strain rate.
The steady-state flow is divided into two modes, a linear-
mode of Newtonian and a nonlinear mode of non-Newtonian.
At higher strain-rates where flow stresses approach the max-
imum stress, the slope of viscosity versus strain rate in the
nonlineartegime is approximated to —1, which indicates that
the distribution of relaxation time is quite narrow because of
its simple atomic structure. Hence the relation between the
viscosity and the strain rate can be fitted with stretched expo-
nent, § approaches 0.96, relaxation function on the basis of a
simple relaxation- function.

The stress-induced structural relaxation is thought to be
the cause of transition between the linear and the nonlinear
viscoelasticity. Accordingly we propose a model based on a
concept of the fictive stress. The calculated S-S curvesagree
fairly well with the experimental results. Furthermore, an os-
cillation behavior appears in the calculated S-S curves at suf-
ficiently high strain-rates, which has been observed in the re-
cent experimental results of the Zr-based glassy alloy. It is
noteworthy that the occurrence of nonlinear viscoelastic phe-
nomenon is determined explicitly by the cohesive strength
of a liquid, o*, and the product, Axé. In metallic glasses,
the transition from Newtonian to non-Newtonian and stress-
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overshoot phenomenon occur for ¢ and oy > o*/4 being
about 2 x 1073E. The concept of a fictive stress and the
hypothesis of stress-induced structural relaxation appear to
be valid, at least they are not in conflict with the experimen-
tal data. These viewpoints deserve further investigations and
confirmation.

REFERENCES

1) H.S. Chen: Rep. Prog. Phys. 43 (1980) 353-432.

2) T. Zhang, A. Inoue and T. Masumoto: Mater. Trans., JIM 32 (1991)
1005-1010.

3) H.S. Chen and D. Turnbull: J. Chem. Phys. 48 (1968) 2560-2571.

4) H. S. Chen and M. Goldstein: J. Appl. Phys. 43 (1972) 1642~1648.

5) E. Bakke, R. Bucsh and W. L. Johnson: Appl. Phys. Lett. 67 (1995)
3260-3262.

6) C. A. Volkert and F. Spaepen: Mater. Sci. Eng. 97 (1988) 449452,

7) S.K.Lee, K. H. Tsang and H. W. Kei: J. Appl. Phys. 70 (1991) 4842—
4845,

8) H.S. Chen: J. Non-cryst. Solids 27 (1978) 257-263.

9) H. Kato, Y. Kawamura, A. Inoue and H. S. Chen: Appl. Phys. Lett. 73

(1998) 3665-3667; ibid. Mater. Trans., JIM 41 (2000) 1202-1207.

10) H. S. Chen, H. Kato and A. Inoue: Jpn. J. Appl. Phys. 39 (2000) 1808
1811.

11) I. D. Ferry: Viscoelastic properties of Polymers, (John Wiley and Sons,
New York, 1970).

12) J.H. Simmons, R. H. Mohr and C. J. Montrose: J. Appl. Phys. 53 (1982)
4075-4080.

13) W. W. Graessley: J. Chem. Phys. 47 (1967) 1942-1953.

14) D. M. Heyes, J. J. Kim, C. J. Montrose and T. A. Litovitz: J. Chem.
Phys. 73 (1980) 3987-3996.

15) L.J. Zapas and J. C. Phillips: J. Rheol. 25 (1981) 405-420.

16) P.J. Carreau: Trans. Soc. Rheol. 16 (1972) 99-127.

17) Y. Kawamura, T. Shibata, A. Inoue and T. Masumoto: Appl. Phys. Lett.
69 (1996) 1208-1210.

18) T. G. Nieh, T. Mukai, C. T. Liu and J. Wadsworth: Scripta Mater. 40
(1999) 1021-1027.

19) FE Bueche: J. Chem. Phys. 48 (1968) 4781-4784.

20) S. Matsuoka: Relaxation Phenomena in Polumers, (Hansa. Publ., New
York, 1992) 115-119.

21) H.Kato, Y. Kawamura, H. S. Chen and A. Inoue: Jpn. J. Appl. Phys. 39
(2000) 5184-5187.

22) H. Kato: Ph.D. Thesis, Tohoku Univ. (1999).



