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Displacement Behavior Study of the Shear Stress Effect on the Early Viscous
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(Fe0:72B0:24Nb0:04)95:5Y4:5 metallic glassy powders were fabricated with a gas-atomizing method and then densely consolidated by the
spark plasma sintering (SPS) technique. Densification behavior during the SPS procedure enables us to understand the thermal behavior and
viscous deformation profiles of glassy particles. The glassy powders were consolidated under various temperatures to determine the effect of
applied stress on the viscous densification behavior. Consequently, viscous densification commenced under a preset stress of 600MPa at a flow
temperature of Tf ¼ 663K, which is approximately 248K lower than that under a stress of 32 kPa, as shown by thermo-mechanical analysis
(TMA). Furthermore, even below Tg, SEM images demonstrated fine imprintability on the glassy powders during this stress-enhanced viscous
densification. [doi:10.2320/matertrans.MBW200851]
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1. Introduction

Recently, the spark plasma sintering (SPS) technique has
attracted considerable attention because of its advantages for
consolidating glassy alloy powders without devitrification
and for fabricating new glassy alloy composites by blending
second crystalline or glassy phases.1–5) Amorphous materials
including metallic glass can be crystallized in the vicinity of
the crystallization temperature, Tx, because they are thermo-
dynamically metastable phases. In the supercooled liquid
temperature range, �Tx (Tx � Tg), glassy materials are
focused to achieve thermal stability for both greater glass
forming ability (GFA) and viscous workability before the
crystallization. It is well known that metallic glasses such as
Pd-6–8) and Zr-based glasses9,10) having high thermal stability
within �Tx could be deformed without devitrification by
taking advantage of their viscous flow nature at this temper-
ature range. On the other hand, there have been relatively
few reports on Fe-based metallic glasses deformed without
crystallization by viscous flow in �Tx because of their
thermally less stable nature compared with that of the
metallic glasses mentioned above. The reason why Fe-based
glassy alloys are unstable in the vicinity of Tg has not yet
been clarified. Hence, in spite of their other functional merits,
ferrous glassy alloys such as Fe- and Co-based alloys have
been mainly studied in thin sheet form for power-related
applications such as transformer core materials and stators or
rotators for electric motors.11–14)

For the purpose of industrial applications of ferrous glassy
alloys, sheet-like products, however, should be reformed
later to fit the requirements of the devices. Thus, amorphous
sheets are rolled up or piled up to make a laminated sheet
core, the stator or rotator depending on the usage. Another
reason such rolling or piling up is that it reduces the eddy
current loss. Thus, ferrous amorphous alloys do not neces-
sarily need to be produced as thick sheets or in bulk form.
The effective thickness of the sheet as transformer core
material, however, is determined by the frequency of an

alternating current (AC). Considering the frequency of 50 or
60Hz, skin depth (a measure of the distance an alternating
current can penetrate beneath the surface of a conductor) is
approximately 0.9mm in the case of an iron core. However,
the skin depth can be enhanced if the electrical resistivity of
the material is increased, by the following relationship:

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=!�

p
ð1Þ

where �, !, and � are electrical resistivity, angular frequency
and permeability, respectively.15) Equation (1) clearly indi-
cates that bulk-shaped products can be applied if their
electrical resistivity is greatly increased.

On soft magnetic amorphous or glassy alloys, it is so
difficult to optimize both GFA and magnetic properties, e.g.,
saturation magnetization and coercivity, simultaneously. To
increase GFA, Inoue’s empirical rules, i.e., alloys with over
three elements, constituent atoms with size differences of
more than 12%, and atoms containing large negative mixing
enthalpy are considered.16) However, these rules tend to work
negatively for enhancing soft magnetic properties, e.g.,
degrading high saturation magnetization, high resistivity for
lower eddy current loss and so on. Considering the above-
mentioned facts, separating the processes could be the most
effective way to increase GFA and enhance the soft magnetic
properties. There might be two ways to separately control
those characteristics. One is increasing GFA followed by
enhancement of the magnetic properties, and the other is to
determine the alloy with the best soft magnetism and then to
increase GFA. For GFA, the compositional characteristic is
the most dominant factor. Thus, the former seems to be a
better solution. However, there are limits to enhancing the
magnetic properties without modifying the composition.
Thus, if it is possible to overcome a lower GFA using
consolidation of glassy powders or ribbons by viscous
deformation in the supercooled liquid state without devitri-
fication, the most reasonable alternative would be the latter.

As mentioned above, Fe-based glassy alloys are compa-
rably easier to crystallize during the consolidation process in
�Tx due to their thermal instability. In this study, we
achieved the anomalous reduction of the viscous flow*Corresponding author, E-mail: smlee@imr.tohoku.ac.jp
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temperature by application of pressure on the glassy powders
using the SPS method. This enables the fabrication of bulky
products without size limitation even for glassy alloys with
lower GFA and poor thermal stability. In addition, the
electrical resistivity can be controlled by mixing foreign
elements or growing surface oxide layers on the powders.
Densification behaviors of the glassy powders were inves-
tigated to clarify the mechanism responsible for the novel
reduction in the flow temperature, Tf .

2. Experimental

(Fe0:72B0:24Nb0:04)95:5Y4:5 glassy powders were fabricated
using the gas-atomizing method in an argon atmosphere and
consolidated by the SPS technique in a vacuum condition at a
heating rate of 0.67K/s up to various temperatures ranging
from 673 to 973K under a preset pressure of 600MPa applied
with tungsten carbide punches. Figure 1 illustrates a sche-
matic illustration of the SPS method used for consolidating
the glassy powders. For the SPS process, displacement
profiles including thermal expansion and viscous flow
natures were plotted as a function of temperature and
compared with the results from thermo-mechanical analysis
(TMA) of a cast sample. The cylinder sample cast with
dimensions of �2mm� 4mm was subjected to TMA under
a preset stress of 32 kPa. The SPSed samples prepared at
different temperatures were investigated by an X-ray dif-
fractometer (XRD), a differential scanning calorimeter
(DSC) (the results are not shown), and a scanning electronic
microscope (SEM) to clarify the effects of the consolidation
temperature and stress on the structural state of the powder
compacts. More detailed experimental methods for preparing
the pre-alloy by the arc-melting and high frequency induction
melting methods and for casting samples by the copper mold
casting method have been described in a previous paper.17)

3. Results and Discussion

SPSed (Fe0:72B0:24Nb0:04)95:5Y4:5 glassy powder compacts
are exhibited in Fig. 2. Each sample was fabricated from
approximately 2 g of the powders at different temperatures.
All the samples except for sample A maintained a disk shape
with a dimension of �12mm and a thickness of 2–3mm
depending on the temperature. Sample A which appears to be
the powder state without consolidation is however partially
densified to maintain its irregular shape, which will later be

shown in detail using SEM images. From sample B to F,
thickness was reduced and density gradually increased due
to viscous densification.

Figure 3 depicts (a) a change in the probe position of TMA
and (b) that in the punch position of SPS at the same heating
rate of 0.67K/s under the different stresses of 32 kPa and
600MPa, respectively. It should be noted that the effective
stress applied to the glassy powders is considered to be much
higher than 600MPa because the actual area sustaining the
applied load should be much smaller than the cross section of
the punch due to the spherical shape of powders. The large
stress difference between 32 kPa and 600MPa caused a novel
reduction in Tf during SPS. The TMA and SPS results
provide important information by comparing the onset and
end temperatures of viscous densification with thermal
characteristics, Tg and Tx, determined by DSC. Viscous flow
deformation does not occur at the onset point of the glass
transition, Tg-onset, but rather at its end point, Tg-end, when the
applied pressure is as small as 32 kPa, as shown in Fig. 3 (a).
On the TMA curve, the probe position increases linearly with
increasing temperature due to thermal expansion of the cast
sample up to Tf , then begins to descend abruptly due to the
viscous flow caused by a sudden drop of viscosity. At around
Tx, the viscous deformation is retarded with increasing
viscosity caused by the crystallization. On the other hand, as
shown in Fig. 3 (b), viscous flow was found to start at
Tf ¼ 663K, which is 210K below Tg during SPS under the
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Fig. 1 A schematic of the Spark Plasma Sintering (SPS) method.

Fig. 2 A photograph of SPSed samples A, B, C, D, E, and F consolidated at

673, 723, 773, 823, 873, and 923K, respectively.
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Fig. 3 Displacement curves as a function of temperature obtained by (a)

Thermo Mechanical Analysis (TMA) under preset stress of 32 kPa on the

cast sample of (Fe0:72B0:24Nb0:04)95:5Y4:5 glassy alloy with a dimension of

� 2mm� 4mm and (b) Spark Plasma Sintering (SPS) under 600MPa on

the gas-atomized glassy powders packed in � 12mm tungsten carbide dies.
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preset pressure of 600MPa. H. J. Jin et al. have pointed out
that Tg and Tx can shift due to the external pressure, e.g.,
shear and hydrostatic stresses.18–20) Furthermore, a wider
workability due to the reduction in Tf from Tg and the
simultaneous enhancement of Tx could enable fabrication of
bulky products with tiny glassy materials, e.g., powders and
ribbons. Kauzmann defined Tg as the temperature at which
the time scale of the relaxation is equivalent to that of the
experiment.21) Structural relaxation, and thus the glass tran-
sition phenomenon, is dominated by the mobility of atoms or
defects. The stress effect on atomic jumping probability, n, at
a given pressure, P, in the crystal state is expressed by a
Boltzmann function, nðPÞ ¼ n0 expð�P�V=kTÞ, where n0
is the jumping probability under zero pressure, k is the
Boltzmann’s constant, T is the temperature, and �V is the
activation volume.22) Using this equation, the relaxation time,
� , can be expressed by the following formula when an
external force (e.g. shear stress, �) is applied:

�ðPÞ ¼ �0 expð��Gm � ��V�=kTÞ; ð2Þ

where�Gm and�V� are the activation energy of the jumping
motion and the activation volume by shear stress, respec-
tively. The activation barrier would be reduced or enhanced
by the direction of ��V� . Jin et al. have drawn the activation
volume of 0.126 nm3 for the compression stress of 1.0GPa
on Vit. 4 by substituting the experimental data for this
equation.20) This result reveals that collective motions of
atoms could be enhanced by external stress. Their assumption
and proof by calculation supports our experimental results
exhibiting the novel reduction of Tf from the thermally
determined Tg of the glassy powders.

To observe the viscous densification state enhanced by
large applied stress on glassy powders, samples were
consolidated at 673K (sample A), 723K (B), 773K (C),
823K (D), 873K (E), 923K (F), and 973K (G), followed by
XRD and SEM, the results being shown in Figs. 4 and 5,
respectively. All the samples except for sample G were
glassy even after SPS at each temperature, as shown in Fig. 4.
With increasing temperature from A to F, the intensity of the

broad peaks became higher at around 35 to 50 degrees, which
was caused by the difference in densification of the samples,
as seen in Fig. 5. It should be noted that a small peak around
45 degrees corresponds to the surface oxide phase, and thus
disappeared when the surface was polished.

As demonstrated by the SEM images, the packing density
of the compact increased with increasing temperature from
sample A to G. Sample A, which was consolidated at
Tf þ 10K (¼ 673K), showed apparent footprints caused by
viscous flow on the surface, as seen in Fig. 5, which could be
direct evidence of stress-induced viscous flow even below Tg.
Furthermore, the SEM images of samples B and C well
demonstrate the patterned surfaces which were imprinted by
the rough surface of the tungsten-carbide punch. From the
above results, viscosity of the stress-induced viscous flow is
considered to be sufficiently low to enable fine imprinting of
the punch surface on the powder surfaces, even at temper-
atures lower than Tg. On the contrary, samples D, E and F
consolidated by use of the mirrored surface of the tungsten
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Fig. 4 XRD patterns obtained from samples A, B, C, D, E, F, and G

consolidated at 673, 723, 773, 823, 873, 923, and 973K, respectively.

Fig. 5 SEM micro images obtained from the surfaces of SPSed samples A, B, C, D, E, and F consolidated at 673, 723, 773, 823, 873, and

923K, respectively.
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carbide punch show the mirrored surfaces as a result of the
imprinting. These indicate the possibility of the near net
viscous shaping of less stable metallic glasses with fine
surface-imprinting, even under Tg, to maintain the glassy
phase.

4. Summary

The effect of stress on the viscous densification of
(Fe0:72B0:24Nb0:04)95:5Y4:5 gas-atomized glassy powders dur-
ing the SPS procedure was investigated. The results can be
summarized as follows.
(1) Viscous densification of the glassy powders was found

to start at Tf ¼ 663K under a preset stress of 600MPa,
which is 248K lower than that measured by TMA under
32 kPa.

(2) A series of SEM images showed the densification
behavior of the glassy powder compacts and exhibited
direct evidence for the stress-induced viscous flow in
the glassy powder compact consolidated at 673K,
which is 200K lower than Tg (¼ 873K) determined by
DSC.

(3) The patterned or mirrored surfaces imprinted on the
compacts demonstrated the fine (micro or nano)
imprintability enhanced by the external stress of less
stable metallic glasses, even well below Tg.
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