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stress. An ab-initio method is then applied to calculate the solute induced stress for Cu, Fe, Li, Mg, Mn, Si, and Zn solute atoms in aluminum.
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1. Introduction

A material is always subjected to some strain field imposed
by its environment or the defects in the material itself. The
strain field affects the energy of the solute atoms, and induces
their migration resulting in a strain dependent distribution of
solute atoms. An example of such effect is the segregation of
solute atoms by the dislocation.? Today computing resources
allow us to perform parameter-free computation of the effect
from the first principles. We derive the effect of the homoge-
neous strain on the solute atom energy by expanding the en-
ergy of the binary alloy to the second order in the concentra-
tion and the homogeneous strain, and then apply an ab-initio
method to calculate the effect for Cu, Fe, Li, Mg, Mn, Si, and
Zn solute atoms in aluminum.

2. Theory

The energy of an A-rich binary alloy, A;_.B, can be writ-
ten as a function of the concentration of B and the homoge-
neous strain. The reference strain state, i.e. the atomic posi-
tions in which the strain is said to be zero, is normally chosen
as the state of lowest energy, however, as we are considering
alloys with different concentrations, it is more convenient to
take the equilibrium position of the host lattice as the refer-
ence for alloys of all concentrations. An alloy with a con-
centration ¢ has a different equilibrium volume as the host
lattice, therefore, using the chosen reference strain state, the
equilibrium state of the alloy is spontaneously strained. It is
also important to emphasize that the strain we are considering
here is the homogeneous strain imposed on the alloy by an ex-
ternal factor, rather than the internal strain resulting from the
atomic relaxation around the solute atoms.

For a dilute alloy and a small strain, the energy can be ex-
panded around the concentration ¢ = O and the strain € = 0
in terms of the first derivative with respect to the concentra-
tion (the derivative with respect to the strain vanishes) and the
second derivatives with respect to the concentration and strain
as
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where E, is the alloy energy, E? is the energy of the strain
free host lattice. The summations are taken over i, j, k,l =
X, Yy, z, and all the partial derivatives are to be evaluated at
c=0andé =0.

The partial derivatives with respect to the strain compo-
nents in eq. (1) form two tensors, the derivative of the stress
tensor, V,d0;;/dc = —azEa/acas,-j, and the elastic modulus
tensor, V,Cijn = 0°E,/ 0g;j0¢err. The stress tensor is zero for
the host lattice at the equilibrium; its derivative with respect
to the concentration is, therefore, the stress due to adding the
solute atom into the host lattice, and hence will be referred to
as the solute induced stress.

The symmetry consideration reduces the number of the in-
dependent non-vanishing components of the two tensors. For
a random substitutional binary alloy A;_.B,, the probability
of finding an A atom at a lattice site, pa, and that of a B
atom, pg, are the same at every lattice site, and therefore, the
alloy has the same symmetry as the underlying lattice. An A-
rich alloy has the same underlying lattice and, thus, the same
symmetry as the pure A material. In the particular case of
a cubic host material, like aluminum, its dilute random alloy
will have the cubic symmetry also. As the quantities char-
acterizing the alloy properties must remain unchanged un-
der the alloy symmetry operations, the derivative of the stress
tensor has only one independent non-vanishing component,?
90y /0c = 00y, /dc = do/dcC.

The effect of the strain on the solute atom energy can be
evaluated from the energy difference between two systems,
both consisting of two subsystems, each containing the same
number of atoms, N, but one subsystem has a solute concen-
tration ¢ = 0 and the other subsystem ¢ = ¢,. In system A,
the subsystem with ¢ = 0 is strain free and the subsystem
with ¢ = ¢, has a strain &,, while in system B, the subsystem
with ¢ = 0 has the strain &, and the subsystem with ¢ = ¢,
is strain free. The only difference between the two systems is
whether the solute atoms are in the strained or the strain free
subsystems, and therefore, the energy difference between the
two systems is the change of the energy of the solute atom,
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Substituting the expansion of the alloy energy, eq. (1), we
obtain,
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Equation (3) gives the change of the solute atom energy
in term of the derivative of the stress tensor. Eshelby® has
developed a continuum theory of lattice defects by describing
a defect as an elastic inclusion with a particular equilibrium
volume and elastic moduli in a hole in the host matrix with a
different equilibrium volume and elastic moduli. In this work,
however, we will use an ab-initio method to compute do;;/dc
directly without introducing empirical parameters such as the
solute-host volume difference and the solute elastic moduli.

As a cubic material has only one independent component of
the stress tensor, 0oy /dc, its solute atom energy depends on
the hydrostatic components of the strain only. Solute atoms
that increase the equilibrium volume of the alloy will have a
lower (higher) energy under expansive (compressive) strain,
and the reverse is true for solute atoms that decrease the equi-
librium volume of the alloy.

3. Calculation Method and Results

The pseudo-potential method is used to calculate the elec-
tronic structure of the alloy by Vienna Ab-initio Simulation
Package.® The method is based on the local density approx-
imation® of the density functional theory, and utilizes ultra-
soft pseudo-potentials.®” The Brillouin-zone integrations use
Monkhorst-Pack® special k-points.

The calculations were done using supercells consisting of
8 atoms, Al;X with X being one of Al, Cu, Fe, Li, Mg, Mn, Si,
and Zn as shown in Fig. 1. The supercells translation vectors
were in the same directions as the primitive translation vec-
tors of the face-centered cubic lattice, with the length twice as
long. The shortest distance between the solute atoms is equal
to twice that of the aluminum atoms.

The energy of the aluminum supercell was calculated as a
function of the cell size, and the result was fitted to Birch’s
equation of state.”) The equilibrium lattice parameter was de-
termined from the minimum of the energy with respect to the
lattice parameter. The supercells of the alloys were set to have
the same lattice parameter and the stress tensors were calcu-
lated.

The calculations were performed with constant cut-off en-
ergies for expanding the wave-functions and for the aug-
mentation charges of 300eV and 400 eV, respectively. Both
cut-off energies were large enough for the ultra-soft pseudo-
potentials used in the calculation. The reciprocal space inte-
grations were performed on a 19 x 19 x 19 k-point mesh in
the first Brillouin zone of the supercell, which is equivalent
to 54,872 k-points in the first Brillouin zone of the primitive
cell of aluminum. To estimate the error due to the recipro-
cal space integrations, calculations were also performed for
the Alg, Al;Fe and Al;Li cells with three additional meshes,
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Fig. 1 Supercell of Al;X used in the calculations with Al and X being rep-
resented by the black and the white spheres, respectively.

Table 1 Calculated stress (GPa) due to the solute atom and the solute atom
energy change (kJ/mol) with respect to the hydrostatic strain, s = AV/V,,.

Solute atom 005 /0C AEg/e
Cu -32.9 —313

Fe —-73.1 —695

Li —2.8 —26

Mg 22.8 216
Mn —64.5 —613

Si —-12.1 —115

-95

Zn —10.0

namely, 13 x 13 x 13, 15 x 15 x 15, and 17 x 17 x 17 k-
point meshes. The errors are estimated from the standard de-
viation of the stress.tensors calculated with different k-point
meshes, and the errors in do,,/dc are expected to be £0.07
and 3-0.25 GPa for Li and Fe, respectively.

Table 1 shows the calculated values of doy,/dc and the
change in the solute atom energy per fractional volume
change, ¢ = AV/V,. The effect of the strain was found to
be minimal for the Li solute atom. It was more pronounced
for Zn, Si, Mg and Cu, respectively, and was particularly
strong for the Mn and Fe solute atoms. All species, except
Mg, were found to decrease the equilibrium volume of the
alloy and to have a lower energy under compressive strain.
Therefore, when a non-uniform strain field is imposed on the
alloy, the concentration of these atoms will be enhanced in the
area where the strain is compressive. The Mg solute atom will
behave in the opposite way. The slip plane of an edge disloca-
tion divides the areas where the strain field is compressive and
where the strain field is expansive. According to the above re-
sult, Cu, Mn, Li, Si, and Zn will be attracted to one side of the
slip plane while Mg will be attracted to the opposite side.

The solute energy change per atom can be compared to the
thermal energy at a particular temperature. If the tempera-
ture is 300K, the thermal energy is about 26 meV, whereas
one percent volume reduction causes changes in the solution
energy of 3, 10, 10 and 22 meV for Li, Si, Zn and Mg, respec-
tively. Therefore, the effect of the strain will be smeared by
the thermal fluctuation and a higher strain is needed to pro-
duce observable change in the concentration profile of these



Strain Dependence of Solute Atom Energy in Aluminum-Rich Alloys

atoms. The same strain may produce significant effect to the
Cu, Mn and Fe solute atoms, whose energy changes are 30, -
60 and 70 meV, respectively.

4. Conclusion

When the binary alloy energy is expanded to the second or-
der in the solute concentration and the strain, the effect of the
strain on the solute atom energy can be derived to be propor-
tional to the solute induced stress. The symmetry consider-
ation suggests that for a cubic material the hydrostatic com-
ponent of the strain only affects the energy, and the energy
change is proportional to the volume change due to the strain.
Solute atoms that increase the equilibrium volume of the al-
loy will have a lower energy in the expansive strain, while the
opposite is true for solute atoms that decrease the equilibrium
volume of the alloy. According to the calculated solute in-
duced stress, Cu, Fe, Li, Mn, Si and Zn atoms in aluminum
will migrate towards compressed areas, whereas Mg atoms
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will migrate towards dilatated areas. The energy change was
found to be largest for the Mn and Fe solute atom, and has
values of about 6 and 7 kJ/mol for a percent volume change,
respectively. The effect is weaker for Li, Si, Zn and Mg, and
it may be observable only under larger strain fields.
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