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To understand the underlying physical trends of the current instability in a composite high-Tc

superconductor, the limiting margin of its current-carrying capacity is derived in dc magnetic fields
in the framework of the macroscopic continuum approximation. A static zero-dimensional model
was used to formulate the peculiarities of the nonisothermal electric field distribution in a composite
in the fully penetrated current states. The power and exponential equations describing the E�J�
dependences of a superconductor are used. The boundary of the allowable stable values of the
electric field, current, and temperature are investigated using qualitative and quantitative models.
Permissible stable values of the electric field and current, which might be lower �subcritical states�
or higher �overcritical states� than those determined by the critical voltage criterion, are discussed.
It is stated that the subcritical quenching electric states are more probable in the operating regimes,
which are observed in the high magnetic field. The overcritical stable quantities of the electric field
exist, for example, if the superconducting composite has a relatively small volume fraction of the
superconductor in a composite. In the meantime, the stable current modes may be both subcritical
and overcritical when the permissible value of the electric field is overcritical. As a consequence of
these features, an unavoidable increase in temperature of the composite superconductor occurs
before its transition to the normal state. The latter depends on a broad shape of the E�J� dependence
of high-Tc superconductor and the current sharing between the superconducting core and the matrix.
In the limiting case, a stable value of the composite temperature may equal the critical temperature
of the superconductor. For such operating states, the criterion of the complete thermal stability
condition is written taking into consideration the nonlinear character of the E�J� dependence.
Simultaneously, an allowable change in temperature of the superconducting composite leads to the
thermal degradation of its current-carrying capacity. It depends on the critical current density of the
superconductor at bath temperature, amount of a superconductor, and cross section of a composite
under fixed cooling conditions. In particular, it is shown that the currents corresponding to the
instability onset do not increase proportionally with relevant increase of the superconductor’s
amount. The estimates presented have general character and may be used to verify the operating
states of low-Tc superconducting composite. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2348631�
I. INTRODUCTION

The studies of the vortex state stability conditions of
type-II superconductors are of renewed interest after the dis-
covery of high-Tc superconductors. These investigations are
important for both the characterization of the performances
of high-Tc superconducting materials and the understanding
of the mechanisms limiting their current-carrying capacity,
which has specific conditions of instability onset due to the
huge flux-creep regimes.

The instabilities in superconductors and composite con-
ductors based on them �multifilamentary superconductors
sheathed by a normal metal� are caused by perturbations of
different natures.1 In particular, the magnetic and current in-
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stabilities limit their application. The magnetic instability
phenomena in the high-Tc superconductors were intensively
studied.2–11 At the same time, the basic peculiarities of the
current instability mechanisms, which limit the current-
carrying capacity of high-Tc superconductors, have not been
fully investigated.

To estimate the limiting currents that can stably flow in
the superconductor without its transition into the normal
state, the voltage-current characteristics are widely used.
Consequently, one measures the voltage-current characteris-
tic and then defines the critical current density Jc at a given
operating temperature and applied magnetic field. The deter-
mination of Jc value may be based on various criteria. As a
rule, this quantity is defined by a fixed electric field criterion.

Usually, it is equal to Ec=1 �V/cm. This technique is based
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on Bean’s model, which omits the nonlinear part of the
voltage-current characteristic. It is a good approximation for
low-Tc superconductors with sufficiently steep voltage-
current characteristics. However, the voltage-current charac-
teristics of high-Tc superconductors have a broad shape,
which does not permit using the critical current criterion to
define their true current-carrying capacity.

The nonlinear dependence of the electric field E on the
current density J induced in high-Tc superconductors by any
external disturbance is due to many reasons: pinning hetero-
geneity, vortex structure defects, thermal activation of flux,
etc. Therefore, there exist various theoretical models explain-
ing the observed E�J� relations of high-Tc superconductors,
taking into consideration the microscopic quantities of the
superconductor. However, a uniform macroscopic theory de-
scribing the dependence of E on J is lacking. Therefore, the
phenomenological equations, in particular, the power and ex-
ponential relations, are extensively used to describe the mac-
roscopic electromagnetic properties of high-Tc superconduct-
ors. Numerous studies �see, for example, Refs. 12–20 and
references cited therein� show that the following equations:

E = Ec�J/Jc�n

and

E = Ec exp��J − Jc�/J��

can be used for the E�J� description of both low- and high-
temperature superconductors. Here, Jc is the current density
at E=Ec, n is the creep exponent of E�J� dependence, and J�

is the creep current density. As known, the power equation
corresponds to logarithmic current dependence of the poten-
tial barrier when the flux creep is determined by numerous
spatial defects of the superconductor. The thermally activated
model with a linear current dependence of the potential bar-
rier lies at the basis of the E�J� exponential relation. This
model describes the flux-creep state of the superconductor
with point defects of its structure. There are also some mac-
roscopic reasons leading to an exponential form of the E�J�
relation. In particular, it may result from the bulk heteroge-
neity of superconducting properties inside the sample. Be-
sides the bulk heterogeneity of critical parameters, the super-
conductor may have the longitudinal heterogeneity.
However, the E�J� relations of these superconductors are
also approximated satisfactorily by the power equation.

Using these E�J� approximations, it was shown that the
macroscopic electrodynamics behavior of high-Tc supercon-
ductors has some particular peculiarities that cannot be ex-
plained in the framework of Bean’s model �see, e.g., Refs.
20–27 and references cited therein�. Moreover, the Bean
model does not allow, in principle, explaining the physical
reasons underlying the current instability phenomenon even
in low-Tc composite superconductors.17 Since the current in-
stability investigations considering essentially the nonlinear
shape of E�J� dependence of high-Tc composite supercon-
ductor are not numerous,28–31 in this paper, we investigate
the key static features, which are initially characteristic of the
current instability problem, and formulate the general criteria
indicating the influence of the parameters of the supercon-

ductor and matrix on the stable thermal and current states.

Downloaded 14 Mar 2010 to 130.34.135.83. Redistribution subject to 
Various types of high-Tc superconductors have been de-
veloped. At present, the most promising high-Tc supercon-
ductors are the Bi-based cuprates. In particular,
Bi2Sr2CaCu2O8 is already superior to low-Tc superconductor
at low cooling bath temperature, which allows one to create
the high-field magnets, in particular, conduction-cooled
ones.32 Therefore, the peculiarities of the stable static current
states of Ag-sheathed Bi2Sr2CaCu2O8 conductor are dis-
cussed below, considering the nonlinear E�J� dependence
that is described by the power and exponential equations
mentioned above.

II. BASIC EQUATIONS

Let us consider an infinitely long composite supercon-
ductor. Assume that the applied magnetic induction B is con-
stant and the twist pitch of a superconductor is not very
small. In general, the evolution of the temperature and elec-
tric field inside the composite superconductor obeys the mul-
tidimensional Fourier and Maxwell equations. But this de-
scription is mathematically complicated. To understand the
basic physical peculiarities of the current instability onset
and to evaluate the stability conditions avoiding a large vol-
ume of computations, let us investigate the limiting case
where the current is charged at an infinitely low rate �dI /dt
→0� in the fully penetrated regime. To simplify the analysis,
let us also assume that �i� the superconductor is evenly dis-
tributed over a cross section of a composite with the volume
fraction � �0���1� and the macroscopic continuum ap-
proximation can be applied; �ii� the size of the superconduct-
ing filament is relatively small and magnetic instability is
absent; �iii� the longitudinal magnetic field variation is neg-
ligible; �iv� the conduction heat exchange between the com-
posite and the refrigerator occurs on the surface; �v� the
transverse conduction heat flux essentially exceeds the heat
flux to the coolant; and �vi� the n value of the creep exponent
is only a function of the external magnetic field �n=n�B��, as
is usually applied in the thermal stability theory �see, for
example, Refs. 28–31�. The small influence of the tempera-
ture dependence of n value on the current stability conditions
at low operating temperatures is proved in the Appendix.
�vii� The E�J� dependences are described by the relationships
mentioned above considering that the current modes under
investigation will not essentially exceed the corresponding
value of the critical current �namely, the quantity J is not
greater than �1+1/n�Jc�.

Under these assumptions, the static electric field, current,
and temperature distributions in the cross section of a com-
posite are approximately uniform. Therefore, in terms of this
zero-dimensional model,1 the temperature of the composite
superconductor can be found from the following equation:

EJ =
hp

S
�T − T0� . �1�

Here, h is the heat transfer coefficient, p is the cooling pe-
rimeter, S is the cross section of a composite, T0 is the oper-
ating temperature, and J is the total transport current density,
which is equal to the sum of currents in the superconducting

core Js and matrix Jm, and is defined as follows:
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J = �Js + �1 − ��Jm. �2�

The steady electric field is generated by the parallel circuit
on the superconducting core and matrix according to the re-
lations

E = Ec� Js

Jc�T,B��n

= Jm�m�T,B� �3�

for the superconductor with the power E�J� dependence and

E = Ec exp� Js − Jc�T,B�
J�

� = Jm�m�T,B� �4�

for the superconductor with the exponential E�J� depen-
dence. Here, �m is the matrix resistivity.

The critical current density Jc depends on the tempera-
ture and magnetic field. This dependence can be described by
the following relations.

First, to simplify the analysis, the well-known linear
temperature-dependent model

Jc�T,B� = Jc0�B�
TcB�B� − T

TcB�B� − T0
�5�

will be used. Here, the current density Jc0 and temperature
TcB are the constants at a given value of the applied magnetic
induction.

Second, let us calculate the critical current density Jc of
Bi-based superconductors in terms of the model reported in
Ref. 33 as follows:

Jc�T,B� = J0�1 −
T

Tc
��	�1 − ��

B0

B0 + B

+ �exp�−
�B

Bc0 exp�− 	T/Tc�
�
 , �6�

summarizing the results which were presented in Refs. 34
and 35. This formula considers the huge flux creep of Bi-
based superconductors, which leads to strong temperature
degradation of the critical current in the high magnetic fields.
The constants Tc=87.1 K, J0=1.1
106 A/cm2, Bc0=466 T,
B0=0.0075 T, 	=10.3, �=5, �=1.73, and �=0.2 were used
for Ag/Bi2Sr2CaCu2O8 tape. They were adapted from the
data presented in Ref. 33. Formula �6� was used also to cal-
culate the effective values of Jc0 and TcB by linear fitting to
the corresponding nonlinear curves Jc�T ,B�. For example, it
was found that TcB=26.2 K and Jc0=1.78
105 A/cm2 at
T0=4.2 K and B=10 T. Figures 1 and 2�a� show the com-
parison between the experimental data and calculations,
which were made using formulas �5� and �6�.

The resistivity of silver as a function of the temperature
and the magnetic field �Kohler’s rule� was approached using
the dependences presented in Refs. 36 and 37. In the simu-
lation the characteristic values of the residual resistivity ratio
RRR=�m�273 K� /�m�4.2 K� were used at �m�273 K�=1.48

10−6 � cm according to Ref. 36.

III. QUALITATIVE STATIC STABILITY ANALYSIS OF
FULLY PENETRATED STATES
Equations �2�–�4� may be rewritten as
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E = Ec	 J − E��1 − ��/�m�T,B��
�Jc�T,B� 
n

�7�

for the superconductor with the power E�J� dependence and

E = Ec exp	 J − E��1 − ��/�m�T,B�� − �Jc�T,B�
�J�


 �8�

for the superconductor with the exponential E�J� depen-
dence. These equations are transformed to the simple formu-
las when Eq. �5� is used and assuming that �m�T ,B�
��m�T0 ,B�=const. This approximation is reasonable in the
temperature range up to 20 K �Fig. 3�. Eliminating the tem-
perature from Eqs. �7� and �8�, the relevant dependence of
the current flowing in a composite on the electric field is
expressed by the following analytical formulas:

J =
�Jc0�E/Ec�1/n + ��1 − ��/�m�E

1 + ��Jc0SE/hp�TcB − T0���E/Ec�1/n

= �Jc0
�E/Ec�1/n + �E/E1�

1 + �E/E2��E/Ec�1/n �9�

for the superconductor with the power E�J� dependence and

J =
�Jc0 + �J� ln�E/Ec� + ��1 − ��/�m�E

1 + ��Jc0SE/hp�TcB − T0��

= �Jc0
1 + �J�/Jc0�ln�E/Ec� + �E/E1�

1 + �E/E2�
�10�

for the superconductor with the exponential E�J� depen-
dence. Here,

E1 =
�Jc0�m

1 − �
, E2 =

hp�TcB − T0�
�Jc0S

.

These formulas demonstrate the existence of two char-
acteristic values of the electric field, which are rooted in the
formation of the voltage-current characteristic of a composite
superconductor. First, the main part of the applied current
stably flows in the superconducting core ��Js� �1−��Jm�

FIG. 1. Critical currents of Ag-sheathed Bi2Sr2CaCu2O8 superconductor vs
applied magnetic field after the experiment ��� and fit calculations �—�.
under the condition of
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E � Ec�E1

Ec
�n/�n−1�

�11�

for the superconductor with the power E�J� dependence and

E

1 + �J�/Jc0�ln�E/Ec�
� E1 �12�

for the superconductor with the exponential E�J� depen-
dence. They are easily obtained by comparing formula �2�
with �9� and �10�. Second, the temperature behavior of the
voltage-current characteristic of a composite superconductor
depends on the second term in the denominator of formulas
�9� and �10�. Therefore, the nearly isothermal voltage-current
characteristic �T�T0� is defined by the condition

E � Ec�E2

Ec
�n/�n+1�

�13�

for the superconductor with the power E�J� dependence and
FIG. 3. Resistivity of silver as a function of temperature.
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E � E2 �14�

for the superconductor with the exponential E�J� depen-
dence.

The quantities E1 and E2 depend on the composite prop-
erties and the cooling power. So, they may satisfy both E1

�E2 and E1
E2 conditions. Let us estimate the possible
values of E1 and E2 using the following estimates: ��0.5,
�m�10−7 � cm, Jc0�105 A/cm2, TcB−T0�20 K, p
�0.1 cm, and S�10−2 cm2. Then E1�10−2 V/cm and E2

�4
10−6 V/cm at the conduction-cooling condition �h
�10−3 W/ �cm2 K�� Under this condition, the current sharing
will have the nonisothermal nature.

If conditions �13� and �14� do not carry out, then the
thermal dissipation in a superconducting composite occurs.
Consequently, the corresponding temperature variation as a
function of electric field is given by

T = T0 + �TcB − T0�
�E/Ec�1/n + �E/E1�
�E/Ec�1/n + �E2/E�

�15�

for the superconductor with the power E�J� dependence and

T = T0 + �TcB − T0�
1 + �J�/Jc0�ln�E/Ec� + �E/E1�

1 + �E2/E�
�16�

for the superconductor with the exponential E�J� depen-
dence. These formulas indicate that the thermal states of the
superconductor with the power and exponential E�J� depen-
dences will differ in the high electric field region and at
relatively small quantities n.

The written expressions are convenient for the analysis
of the validity of different electric field criteria used for de-
scribing the critical current measurements, which must be
defined at isothermal operating states. Besides, formulas �11�
and �12� allow to estimate the effect of the matrix on the
voltage-current characteristic of a composite defining the
currents, which flow in the superconducting core and the

FIG. 2. �a� Critical current and �b� its temperature de-
rivative of a Ag-sheathed Bi2Sr2CaCu2O8 supercon-
ductor vs temperature after the experiment ���, fit cal-
culation �—�, and linear approximation �----� at B
=10 T.
matrix for the given electric field criterion. It is seen that the
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lower the volume fraction of a superconductor or matrix re-
sistivity, the lower the electric field range at which the
current-sharing mechanism will not be observed. This range
also decreases with decreasing critical current density of a
superconductor. At the same time, according to �13� and
�14�, the increase in the quantities Jc0 and � decreases the
possible values of the electric field when the stable operating
states of the composite are practically isothermal. The exis-
tence of the isothermal mode of the composite supercon-
ductor depends also on its size: the langer the cross section
of the composite, the higher the temperature effect, as shown
by formulas �9� and �10�.

Using �15� or �16�, one can estimate the temperature of
the sample during experiments. In particular, these formulas
allow one to formulate the condition of the complete thermal
stability in the framework of the linear approximation �5�. In
this case, the possible stable temperature of the composite is
equal to the critical temperature of the superconductor TcB

and the applied current flows stably only in the matrix. As a
result, such states satisfy the following inequalities:

��JC0

ES
1/n �2� S

hp�TcB − T0��1−�1/n�� �m

1 − �
�1+�1/n�

� 1
and

doubled with the increase in the quantities �, Jc0, and S

Downloaded 14 Mar 2010 to 130.34.135.83. Redistribution subject to 
1 −
J�

Jc0
�

Ef

E1

for the superconductor with the power and exponential E�J�
dependences, respectively. Here, Ef is the solution of the
following equation:

E2

Ef
−

Ef

E1
=

J�

Jc0
ln

Ef

Ec
.

They have the limiting transition to the inequality

	 =
�2Jc0

2 �mS

hp�1 − ���TcB − T0�
� 1

at n→� and J�→0, which is well known as the Stekly sta-
bility criterion.1

Thus, formulas �11�–�16� give the exact estimates of the
current sharing and temperature effects when the applied cur-
rent stably increases. However, they do not describe the
boundary of the stable states. To define the stability param-
eters, let us define the differential resistivity of the compos-
ite, which determines the slope of its voltage-current charac-
teristic in the uniform electric field distribution. According to

�9� and �10�, it is equal to
�E

�J
=

�m

1 − �

�1 + �E/E2��E/Ec�1/n�2

1 + �E1/nE��E/Ec�1/n − �E1/E2��E/Ec�2/n − �E/nE2��E/Ec�1/n �17�

for the superconductor with the power E�J� dependence and

�E

�J
=

�m

1 − �

�1 + �E/E2��2

1 + �J�/Jc0��E1/E� − �E1/E2��1 − �J�/Jc0� + �J�/Jc0�ln�E/Ec��
�18�
for the superconductor with the exponential E�J� depen-
dence.

These formulas indicate that the differential resistivity of
the composite may have both positive and negative values.
The voltage-current characteristic of the composite supercon-
ductor with a positive derivative �E /�J corresponds to the
stable static states and the negative one determines the un-
stable states during uniform distributions of temperature and
electric field. Therefore, it is easy to find the stable and un-
stable operating regimes by analyzing �E /�J. In principle,
formulas �17� and �18� indicate that the current instability in
superconductors occurs due to the unavoidable increase in
their temperature. Namely, when the quantity E2 is very
large, i.e., when the temperature of the composite is practi-
cally constant during current charging and is equal to the
cooling bath temperature, then the differential resistivity of
the composite is positive in the wide electric field range. As
a result, the charged currents will be stable in this electric
field range. According to relationship �14�, the influence of
temperature on the current instability conditions will be re-
under fixed cooling conditions. In other words, there exists a
thermal degradation mechanism, which will decrease the
current-carrying capacity of superconductors. The effect of �
and Jc0 on the thermal degradation of the current-carrying
capacity is discussed below.

Let us discuss the basic static peculiarities that underlie
the current instability onset in a composite superconductor
with arbitrary temperature dependences of quantities Jc and
�m. Assume that the dependence of the density of the current
flowing in a superconducting core on the electric field and
the temperature may be described by the relation

Js = Jc�T�V�E,T� .

Here, V�E ,T� is the arbitrary function of the electric field and
temperature depending on the microscopic mechanisms of
vortex states. Let us substitute this relation into Eq. �2� and
differentiate it with respect to E. It leads to the following

expression:
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�J

�E
= �V

�Jc

�E
+ �Jc� �V

�E
+

�V

�T

�T

�E
� +

1 − �

�m

−
1 − �

�m
2

��m

�T

�T

�E
E .

Using the additional relations
n�2 �2 n

Downloaded 14 Mar 2010 to 130.34.135.83. Redistribution subject to 
�Jc

�E
=

�Jc

�T

�T

�E
,

�T

�E
=

JS

hp
+

ES

hp

�J

�E
,

the differential resistivity of a composite superconductor is
written as follows:
�E

�J
=

1 − 
�V��Jc/�T� + �Jc��V/�T� − ��1 − ��/�m
2 ����m/�T�E��ES/hp�

��1 − ��/�m� + �Jc��V/�E� + 
�V��Jc/�T� + �Jc��V/�T� − ��1 − ��/�m
2 ����m/�T�E�
�JcV + ��1 − ��/�m�E��S/hp�

.

This formula demonstrates that the temperature variation
in the �Jc /�T term affects specifically the onset of the current
instability. As known, the �Jc /�T term is negative in many
cases of practical interest and, therefore, the instability hap-
pens. However, its absolute value in the case of high-Tc su-
perconductors becomes very small in the intermediate tem-
perature region that is not close to the critical temperature.
Figure 2�b� shows the corresponding curve describing the
temperature derivative of the critical current density as a
function of temperature in the high magnetic fields. As a
consequence, the current charging may be stable and the
composite temperature may stably increase noticeably in the
intermediate temperature range because only one stable
branch of the E�J� dependence may exist due to the small
value of ��Jc /�T�. This peculiarity depicts the intrinsic advan-
tage of high-Tc superconductors over low-Tc superconduct-
ors, which leads to their high current stability. The given
conclusions should be emphasized because this feature of
high-Tc superconductor’s stability is revealed by the static
analysis and is not based on the known dynamics stability
mechanism of the heat capacity of the superconductor and
the matrix. Indeed, the heat capacity usually is used to ex-
plain the high stability properties of high-Tc superconduct-
ors. At the same time, the advanced stability conditions of
high-Tc superconductors in high magnetic fields are also due
to their nonlinear temperature dependence of �Jc /�T term.

Thus, there exist a specific limiting current that is not
equal to the critical current of a superconductor, and after
which the irreversible transition of a superconductor into the
normal state will occur. It is defined by the condition17

�E/�J → � . �19�

Under this condition, the instability boundary is described by
so-called quenching values of the electric field Eq, current
density Jq, and temperature Tq. In dimensionless variables,
�q=Eq /Ec, iq=Jq /�Jc0, �q= �Tq−T0� / �TcB−T0�, and within
the framework of the linear Jc�T� model defined by Eq. �5�,
these quantities satisfy the relations

1
�q

1+�1/n� +
�1

�q
2/n −

�1
�q

�1/n�−1 = 1,
iq =
�q

1/n + �q/�1

1 + �q
1+�1/n�/�2

,

�q =
�q

1+�1/n� + �q
2/�1

�q
1+�1/n� + �2

�20�

for the superconductor with the power E�J� dependence and

�q

�1
+ � =

�q

�2
�1 − � + � ln �q� ,

iq = �
�2

�q
+

�2

�1
,

�q = � +
�q

�1
�21�

for the superconductor with the exponential E�J� depen-
dence. Here,

� =
J�

Jc0
, �1 =

E1

Ec
, �2 =

E2

Ec
.

Formulas �20� and �21� show that the allowable increase
in the composite temperature before the onset of instability,
which is absent in the Bean model, is always finite because
there exist two mechanisms leading to its unavoidable over-
heating. First, it is a broad shape of the E�J� dependence of
the high-Tc superconductors: the lower n or higher �, the
higher the increase in the temperature of the composite. Sec-
ond, the thermal state of the composite depends on the cur-
rent sharing, which is a function of the superconductor and
matrix properties. The latter is described by the dimension-
less parameter �1: the higher this value, the lower the current
flowing in a matrix and the lower the stable temperature of
the superconductor. Therefore, the formation of stable states
of the composite superconductor is a result of relevant col-
lective thermal and electrodynamics behavior of the super-
conductor and the matrix: the higher the charging current, the
higher the induced electric field and temperature of the com-
posite before the instability onset.

The connection between values �1 and �2 should be also
noted. One can see that the above-mentioned thermal stabil-

ity parameter 	 equals
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	 =
E1

E2
.

As known, the physical meaning of 	 denotes the ratio of the
characteristic Joule heat generation in the matrix to the heat
flux transferring to the refrigerator.1 It defines the thermal
stability conditions of the composite superconductor with re-
spect to the external temperature disturbances.38 The intro-
duced quantities E1 and E2 show that 	 is also equal to the
ratio of the characteristic electric field identifying the exis-
tence of a current-sharing mechanism to the characteristic
electric field determining the boundary of the isothermal
states of the composite. Usually, the condition 	� 1 takes
place in many experiments. Therefore, it corresponds to such
thermal states of composite superconductor at which its
quenching overheating may occur due to the increase in tem-
perature of a superconductor without current sharing.

Using the above-written formulas �20� and �21�, it is
easy to find the conditions describing the boundary between
stable values of the electric field and current, which might be
lower �subcritical regimes� or higher �overcritical regimes�
than those determined by the critical voltage criterion. Let us
put �q=1. Then the boundary between the subcritical and
overcritical values of the quenching electric field is defined
by the equation

�2 = �
1 + n�1

�1 + n

�1�1 − ��
1 + ��1

�
for the superconductor with the power and exponential E�J�
dependences, respectively. With this value of the parameter
�2, the relevant quenching currents are equal to

iq = � n

n + 1
+

1

�n + 1��1

1 − � ,
�

i.e., they are less than the critical current of a superconductor.
According to these formulas, the allowable values of the
electric field and the current before the instability are sub-
critical �Ec�Eq, Ic� Iq� if the operating parameters satisfy
the inequality

�Jc0EcS

hp�TcB − T0�
�

��mJc0 + n�1 − ��Ec

n��mJc0 + �1 − ��Ec

for the superconductor with the power E�J� dependence and

�2Jc0
2 EcS�m

hp�TcB − T0�
�

��mJ� + �1 − ��Ec

1 − J�/Jc0

for the superconductor with the exponential E�J� depen-
dence. If these conditions are broken, the quenching electric
field exceeds the critical voltage criterion Ec. However, in
these cases, the quenching current may be both subcritical
and overcritical. The overcritical current mode �Ic� Iq� exists
if the condition Ec�Eoc�Eq takes place. Here, the value of

Eoc satisfies the equation
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1 +
Ec

E2
�Eoc

Ec
�1+�1/n�

= �Eoc

Ec
�1/n

+
Eoc

E1

for the superconductor with the power E�J� dependence and
equals

Eoc =
E1�

E1/E2 − 1

for the superconductor with the exponential E�J� depen-
dence. Consequently, the possible stable operating modes of
the high-Tc composite superconductors will have the over-
critical values of the electric field �Ec�Eq� and the subcriti-
cal values of the current �Ic� Iq� when Ec�Eq�Eoc and

�Jc0EcS

hp�TcB − T0�
�

��mJc0 + n�1 − ��Ec

n��mJc0 + �1 − ��Ec

for the superconductor with the power E�J� dependence and

�2Jc0
2 EcS�m

hp�TcB − T0�
�

��mJ� + �1 − ��Ec

1 − J�/Jc0

for the superconductor with the exponential E�J� depen-
dence.

The results of the generalized analysis of the current
instability onset based on the written formulas are presented
in Figs. 4 and 5. They were obtained at �1=104, which is
typical for the high-Tc superconducting composite. The val-
ues of n and � were set so that the equality n=1/� was
fulfilled.9 Under this condition, the power and exponential
E�J� dependences touch each other at the prescribed point

Ec ,Jc0� and the calculated values of the electric field do not
considerably differ. It allows to compare the effect of E�J�
dependences used on the simulation results.

Figure 4 shows the influence of the smoothness param-
eters of E�J� dependences on the subcritical boundary of the
admissible quantities of the electric field, current, and tem-
perature at various values of �2. �Note that in the framework
of the dimensionless analysis performed, the variation of �2

is caused by the change of the hp /S term, e.g., due to the
possible modification of the heat transfer condition and/or
the transverse size of the composite.� In this case, according
to relations �20� and �21�, the relevant subcritical quenching
electric field and current may be estimated as follows:

�q � ��2

n
�n/�n+1�

, iq �
n

n + 1
��2

n
�1/�n+1�

�22�

for the superconductor with the power E�J� dependence and

�q �
��2

1 − �
, iq � 1 − � + � ln

��2

1 − �
�23�

for the superconductor with the exponential E�J� dependence
under the condition �1�1. These subcritical states depend-
ing on quantity �2 are characterized by the corresponding
decrease in the quenching currents and increase in the
quenching temperature. Therefore, the electric states of the
composite superconductor before the instability onset tend to
develop into the overcritical ones when the quality of the
superconductor is degraded �with decreasing n or increasing

�� due to the finite increase in a composite temperature be-
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fore the instability onset. This subcritical overheating of a
superconductor is unavoidable owing to a broad shape of
E�J� dependences and becomes noticeable when E�J� depen-

FIG. 4. �a� Stable subcritical electric field, �b� current, and �c� temperature
vs smoothness parameters: �—� power E�J� dependence and �----� exponen-
tial E�J� dependence.
dences correspond to strong flux-creep states �n�10, �
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�0.1�. This result shows that the sample may have finite
overheating and the current modes may be unstable below
the critical point 
Ec ,Jc0� in the measurements of the critical
currents. The importance of this conclusion should be em-
phasized because it is usually believed that the temperature
of a sample equals the cooling bath temperature and the op-
erating regime of the composite is stable as the charging
current and induced voltage do not exceed the boundary de-
fined by the parameters 
Ec ,Jc0� used. At the same time, the
proper current-carrying capacity of a composite may not sat-
isfy such assumption.

As a whole, the written estimates and Fig. 4 show that
the composite superconductors with the power and exponen-
tial E�J� dependences will have practically the same current
stability conditions in the weak creep range �n�10, ��0.1�.
In the meantime, the difference increases with decreasing �2

due to the relevant temperature effect on the current modes
of the composite, as discussed above and following Eqs.
�15�–�18�. As a result, the superconducting composite with
power E�J� dependence is more stable than that with expo-
nential E�J� dependence in the subcritical regimes. However,

FIG. 5. �a� Stable electric field and �b� current as a function of dimension-
less electric field �2 at n=1/�=10: �—� power E�J� dependence and �----�
exponential E�J� dependence.
this tendency depends on the quantity �2. The effect of the
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parameter �2 on the operating regimes is depicted in Fig. 5. It
indicates the existence of two characteristic regions of the
quenching currents. First, the iq��2� dependence has an area
where the subcritical quenching currents depend essentially
on increasing �2. These subcritical states are observed at
small values of �2. In other words, this peculiarity will be
detected at nonintensive cooling conditions or when the
cross section of the composite superconductor is relatively
large. As calculations show, this iq value range also depends
on the matrix resistivity. It is larger when the matrix has
lower resistivity. Second, the quenching current has an area
where their values do not change sharply with increasing �2.
Under these conditions, the operating states become over-
critical. As a result, in the intensive cooling conditions or in
the case of a composite with a small cross section, the stable
regimes may have only overcritical values of the electric
field or overcritical quantities of the electric field and cur-
rent.

IV. QUANTITATIVE CURRENT STABILITY ANALYSIS
AT LOW OPERATING TEMPERATURE „T0=4.2 K…

Let us discuss the possible change in the stability bound-
ary of the Ag-sheathed Bi2Sr2CaCu2O8 superconductor. The
corresponding quench parameters are depicted in Figs. 6 and
7 as a function of the volume fraction of the superconductor
in a composite. �Note that the proposed dimensionless analy-
sis does not allow one to understand directly the influence of
� on the stability conditions.� The simulation was made for
different resistivities of the matrix at the heat transfer coef-
ficient h=10−3 W/ �cm2 K� that is close to the conduction-
cooling condition. The parameters of the superconducting
composite were set as n=1/�=11, S=0.0123 cm2, and p
=0.47 cm. Linear and nonlinear temperature models of the
Jc�T� dependence were used. As a result, the curves pre-
sented in Fig. 6 were defined according to the written ana-
lytical formulas as �m�T ,B�=�m�T0 ,B�. The results plotted in
Fig. 7 correspond to the numerical computations based on
Eqs. �1� and �6�–�8� and condition �19� at which the resistiv-
ity of silver has taken into account its dependence on the
temperature and magnetic field.

Figure 6 depicts the influence of E�J� type and quantities
Jc0 and RRR on the allowable values of the electric field,
temperature, and current before the instability onset that
leads to the overcritical regimes for practically all operating
modes considered. The calculations were made under the
assumption that B=10 T, at which �m�T0 ,B�=1.685

10−7 � cm.

As follows from Figs. 6�a� and 6�b�, the quenching val-
ues of the electric field and temperature increase with de-
creasing �. Therefore, the subcritical states are possible at
high values of the volume fraction coefficient. Besides, Fig.
6�b� also indicates the effect of the broad shape of E�J� de-
pendences and current-sharing mechanism on thermal modes
of the composite, which will be observed at the variable
quantity �. It is seen that there are two characteristic regions
of Tq��� dependence. Firstly, it has an area where the quench
temperature depends weakly on �, particularly, when Jc0 is

high. The overheating of the composite in these states is
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mainly the result of the smooth nature of the E�J� depen-
dence. The second characteristic area existing due to the cur-
rent sharing is the region where the change in � influences

FIG. 6. �a� Stable electric field, �b� temperature, and �c� current vs volume
fraction of superconductor with various E�J� dependences �—, �, 
: power
E�J� dependence; �: exponential E�J� dependence� under linear approxima-
tion �5�: 1–Jc0=104 A/cm2, 2–Jc0=3
104 A/cm2, and 3–Jc0=105 A/cm2.
essentially the allowable increase in temperature. The
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amount of the superconductor where these areas exist de-
pends on the matrix resistivity, critical current density, and,
as it is easy to understand, the cooling conditions. As a
whole, the dominant role is played by the second area at a
relatively low value of Jc0. In these cases, the allowable elec-
tric field and temperature before the instability onset may be
high, namely, Eq�10−5 V/cm, and the quench temperature
may exceed 10 K under the conduction-cooling conditions.
For such superconducting composites, the allowable rise of
the electric field and overheating becomes not only higher
but shows a more drastic increase, as has been discussed
above. Simulations demonstrate that these peculiarities are
valid when the nonlinear model Jc�T� is considered. These
overcritical operating states having high values of the allow-
able electric field and overheating were experimentally ob-
served in Refs. 29 and 39–41.

The � dependence of the current stability boundary is
plotted in Fig. 6�c�. It is seen that Iq��� dependences may
have a minimum. The existence of the volume fraction �min,

FIG. 7. �a� Stable electric field and �b� current as a function of volume
fraction of a superconductor at various values of the applied magnetic field
defined in the framework of the nonlinear temperature dependences Jc and
�m.
at which the minimum Iq exists, depends on the matrix re-
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sistivity and the value of Jc0. At the parameters considered,
the value of �min displaces to the area of lower values. The
simulated analysis reveals that the existence of the minimum
value of Iq is a result of the current-sharing mechanism. That
is why, for these operating modes, the allowable increase in
the temperature and electric field before the instability may
be high. As a whole, Fig. 6�c� shows that the matrix resistiv-
ity does not practically change the quenching currents of a
composite superconductor with the high value of the critical
current under the conduction-cooling conditions. However, it
should be noted that the value of the critical current density
at the cooling bath temperature affects the region where sub-
and overcritical currents exist. As a result, the difference be-
tween the critical and quench currents increases with increas-
ing Jc0 according to estimates �13� and �14�.

Figure 6 also affirms the above-discussed tendency,
which underlies the possible difference between the stability
conditions of superconductors with the power and exponen-
tial E�J� dependences. It is seen that the difference between
the allowable increase in temperatures of such composite su-
perconductors becomes more visible in the range of small
values of �. This regularity follows from relationships �15�
and �16�, which indicate that the difference in the thermal
states of superconducting composites with the power and
exponential E�J� dependences will be observed in the high
electric field. The given conclusion should be taken into ac-
count when the equation of the E�J� dependences is recov-
ered from the experiments.

Figure 7 demonstrates the magnetic field effect on the
subcritical and overcritical regimes of the composite super-
conductor with the power E�J� dependence and high critical
current. The latter also is depicted in Fig. 7�b�. It is seen that
the higher the magnetic field, the higher the range of � where
the subcritical electric fields exist. In this case, the possible
quenching currents tend to be lower than the corresponding
value of the critical currents in a wide range of the � value.
As a whole, the change in the depicted Iq��� curves are due
to the following reasons. First, the high critical current den-
sity of the composite superconductor considered leads to cur-
rent states at which the current sharing occurs only at small
values of the volume fraction coefficient. Owing to this pe-
culiarity, the quenching currents may exceed the critical
ones, as discussed above, when the amount of supercon-
ductor is small. Second, the overheating of the composite
superconductor is not zero due to the broad shape of the E�J�
dependence. This overheating leads to the relevant thermal
degradation of the composite current-carrying capacity
caused by the variation of the volume fraction coefficient.
Accordingly, the following regularity is observed: the higher
the volume fraction coefficient, the higher the difference be-
tween the critical and quenching currents. Therefore, the
quenching currents do not increase proportionally to the pro-
portional increase in the volume fraction coefficient. In par-
ticular, Iq�=424.6 A and Iq�=1512.7 A at ��=0.2 and ��
=0.8, respectively, at B=10 T, i.e., �� /��=4 but Iq� / Iq�
=3.56. According to formulas �9� and �10�, this � degrada-
tion of the current-carrying capacity of the composite takes
place due to the finite value of the characteristic quantity E2
that decreases with increasing �. As a result, the influence of
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unavoidable overheating of the composite on the stable val-
ues of charging current increases despite the small overheat-
ing of the composite at high values of �.

V. CONCLUSIONS

The current instability problem has been investigated in
the macroscopic static approximation for the composite su-
perconductors having the power and exponential E�J� depen-
dences. The results of this study show that the possible stable
increase in temperature of high-Tc composite superconduct-
ors should be taken into account for correct investigation of
their critical currents and current stability conditions. As a
result, the following peculiarities take place in the operating
state formation of high-Tc superconducting composites:

�1� The electrodynamics states of high-Tc composite super-
conductors having power and exponential E�J� depen-
dences may not be equivalent. The noticeable difference
will be seen in strong creep states �n�10, J� /Jc0�0.1�
due to the corresponding difference in the stable in-
crease in temperature of a superconductor.

�2� The formulated conditions describing the boundary of
the stable subcritical and overcritical states of supercon-
ducting composite with the nonlinear E�J� dependences
show that the subcritical electric fields �stable electric
fields that cannot exceed the fixed critical quantity� are
more probable in the high magnetic fields or when a
composite with the high-resistivity matrix has a rela-
tively high value of the volume fraction of the supercon-
ductor. In this case, the stable value of the current flow-
ing in a composite may be lower or higher than those
defined by the critical voltage criterion.

�3� The written analytical expression defining the differen-
tial resistivity of a composite with arbitrary temperature
dependences of the critical current density proves that
not only the negative value of dJc /dT but also its tem-
perature variation in the temperature range, which is not
close to the critical temperature of a superconductor,
particularly affect the current instability onset. By that,
the current instability in Bi-based composite supercon-
ductors may be absent at intermediate operating tem-
peratures.

�4� The critical current density of a superconductor at cool-
ant temperature, the volume fraction coefficient, and
composite cross section or smoothness character of E�J�
dependences affect the range of the allowable rise in the
electric field at which the operating state of a composite
is practically isothermal.

�5� The unavoidable overheats of the superconductor before
its transition to the normal state may be noticeable, in

particular, when the composite has a low-resistivity ma-
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trix or at a relatively small value of the volume fraction
coefficient. In these cases, the current sharing underlies
the current-carrying capacity of a composite that may
lead to minimum quenching currents. The overheating
peculiarity takes place as well at subcritical regimes ow-
ing to a broad shape of the E�J� dependence. This over-
heating becomes essential when the superconductor has
strong flux-creep states. Therefore, the temperature of
the composite is not equal to the cooling bath tempera-
ture before the instability onset at both subcritical and
overcritical modes.

�6� The unavoidable overheats of the superconducting com-
posite lead to the existence of the thermal degradation
mechanism, which results to the relevant decrease in the
composite’s current-carrying capacity. As a result, the
quenching currents do not increase proportionally to the
proportional increase in the critical current of the
superconductor.

The features discussed must be considered to make the
correct investigation of the current instability problem of Bi-
based composite superconductors.
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APPENDIX

Let us estimate the possible effect of the temperature
dependence of n index on the conditions of the current insta-
bility onset, investigating the composite differential resistiv-
ity and assuming that �m�T ,B���m�T0 ,B�=const. The set of
Eqs. �2� and �3� may be rewritten as follows:

J = �Jc�T�� E

Ec
�1/n�T�

+
1 − �

�m
E .

Differentiating this equation with respect to E, one can get
the following expression:

�J

�E
= �

�Jc

�E
� E

Ec
�1/n�T�

+ �Jc
�

�E
� E

Ec
�1/n�T�

+
1 − �

�m
.

Using the additional relations

�Jc

�E
=

�Jc

�T

�T

�E
,

�T

�E
=

JS

hp
+

ES

hp

�J

�E
,

�

�E
� E

Ec
�1/n�T�

= � E

Ec
�1/n�T�	 1

nE
+

d

dT
� 1

n�T�� �T

�E
ln

E

Ec

 ,
the composite differential resistivity is defined by
�E

�J
=

1 − ��ES/hp��E/Ec�1/n�T��dJc/dT�
1 + �Jc/�dJc/dT���d/dT��1/n�T��ln�E/Ec��
��1 − ��/�m� + ��/n��Jc/E��E/Ec�1/n + ��JS/hp��E/Ec�1/�n�T���dJc/dT�
1 + �Jc/�dJc/dT���d/dT��1/n�T��ln�E/Ec��

.
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Thus, the effect of the temperature-dependent n index de-
pends on the term

��T� =
Jc

�dJc/dT�
d

dT
� 1

n�T��ln
E

Ec
.

To estimate it, let us use the known relationship

n�T� =
U0�T,B�

kBT
.

Here, kB is the Boltzmann constant and U0 is the pinning
potential, which in general form may be written as

U0�T,B� = U00�B��1 − � T

TcB
�m�p

,

where m and p are the constants. Then it is easy to obtain
that

��T� �
kBTcB

U00�B�
.

Consequently, the temperature dependence of n index will
have a small influence on the current stability conditions
when the temperature of a composite is not too close to the
critical temperature of a superconductor because the quantity
U00 is very large.
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