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In the ground state of the doped two-leg Hubbard ladder there are power-law decaying dx2−y2-type pairing
correlations. It is important to know the strength and the temperature scale of these correlations. For this
purpose, we have performed determinantal quantum Monte Carlo �QMC� calculations of the reducible particle-
particle interaction in the Hubbard ladder. In this paper, we report on these calculations and show that, at
sufficiently low temperatures, resonant particle-particle scattering takes place in the dx2−y2 pairing channel for
certain values of the model parameters. The QMC data presented here indicate that the dx2−y2 pairing correla-
tions are strong in the Hubbard ladder.
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It is generally accepted that the high-Tc cuprates1 are
dx2−y2 wave superconductors.2,3 It is also known that the spin-
fluctuation exchange in electronic models4,5 and an electron-
phonon interaction which has its largest coupling at small
wave vectors6–8 can lead to an effective electron-electron
interaction which is attractive in the d-wave Bardeen-
Cooper-Schrieffer �BCS� pairing channel. However, it is not
yet clear what is the pairing interaction responsible for su-
perconductivity in the high-Tc cuprates. Within this context,
it is important to determine the maximum possible strength
of the dx2−y2 pairing correlations which one can obtain in a
purely electronic model such as the Hubbard model. Unfor-
tunately, the ground state of the two-dimensional �2D� Hub-
bard model remains beyond the reach of the exact many-
body techniques.9 However, in the case of the two-leg
Hubbard ladder, the density matrix renormalization group
�DMRG� calculations found power-law decaying dx2−y2-type
pair-field correlations.10,11 This is probably the only model
where it is known from exact calculations that the pairing
correlations become enhanced by turning on an onsite Cou-
lomb repulsion in the ground state.11,12 Hence, it is important
to determine the maximum possible strength and the tem-
perature scale of the dx2−y2 pairing correlations in the Hub-
bard ladder, which is the main motivation of this paper.

Here, we present quantum Monte Carlo �QMC� results on
the reducible particle-particle interaction � in the BCS chan-
nel, which is illustrated in Fig. 1. The reducible � serves as a
powerful probe of the pairing correlations. For example, in
the case of an s-wave superconductor, � at the Fermi surface
would diverge to −� due to repeated particle-particle scatter-
ings in the BCS channel, when the superconducting transi-
tion is approached, T→Tc

+. In this paper, we investigate the
strength of the dx2−y2 pairing in the Hubbard ladder by mak-
ing use of the exact QMC data on �.

In the following, we show that the reducible particle-
particle interaction � in the Hubbard ladder exhibits diverg-
ing behavior as the temperature is lowered for certain values
of the model parameters. We find that, on the Fermi surface,
� can become strongly repulsive �attractive� for q��� ,��
�q�0� momentum transfers, which correspond to backward
�forward� scatterings. In particular, near half-filling and for
Coulomb repulsion U=4t and temperature T=0.1t, where t is

the hopping matrix element, the backward and forward scat-
tering amplitudes can become an order of magnitude larger
than the bare Coulomb repulsion or the bare bandwidth. This
type of momentum dependence of � implies that resonant
particle-particle scattering is taking place in the BCS channel
already at T�0.1t. For U=8t, we observe similar behavior at
about twice higher temperatures. The temperatures studied in
this paper are lower than those reached in previous QMC
calculations of � for the 2D �Ref. 13� and the two-leg14

Hubbard models. In addition, we present results on the solu-
tion of the Bethe-Salpeter equation in the BCS channel,
which quantitatively determines the strength of the pairing
correlations. The QMC data shown in this paper imply that
the dx2−y2-type pairing in the two-leg Hubbard ladder is
strong for certain values of the model parameters.

We begin by briefly describing the previous studies of
dx2−y2 pairing in the Hubbard ladder. The DMRG calculations
found that the rung-rung pair-field correlation function de-
cays as power law in the ground state of the doped Hubbard
ladder.10 The mean-field calculations suggested the dx2−y2

type of symmetry for pairing in doped spin ladders.15 The
exact diagonalization12 and the DMRG11 calculations found
that the dx2−y2 pairing correlations are most enhanced when
the interchain hopping t� is greater than the intrachain hop-
ping t, in particular, for t��1.5t in the intermediate coupling
regime and near half-filling. In this case, the QMC calcula-
tions showed that the irreducible particle-particle interaction
peaks for momentum transfers near �� ,�� due to antiferro-
magnetic fluctuations.14

The two-leg Hubbard model is defined by

FIG. 1. Feynman diagram for the reducible particle-particle in-
teraction ��p� � p� in the BCS channel. Here, p denotes �p , i�n� with
Matsubara frequency �n. In this diagram, the incoming fermions at
states p with up spin and −p with down spin scatter to states p� with
up spin and −p� with down spin by exchanging q= p�− p.
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H = − t �
i,�,�

�ci,�,�
† ci+1,�,� + H . c . �
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† ci,2,� + H . c . � + U�
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where t is the hopping parameter parallel to the chains �along
x̂�, and t� is for hopping perpendicular to the chains �along
ŷ�. The operator ci,�,�

† �ci,�,�� creates �annihilates� an electron
of spin � at site i of chain �, and ni,�,�=ci,�,�

† ci,�,� is the
electron occupation number. As usual, U is the onsite
Coulomb repulsion, and � is the chemical potential. In addi-
tion, periodic boundary conditions were used along the
chains, and t� denotes interchain hopping for open boundary
conditions.

In obtaining the data presented here, the determinantal
QMC technique described in Ref. 16 was used. The calcula-
tion of the reducible interaction � follows the procedure de-
scribed in Ref. 13 for the 2D case. The BCS component of
the reducible particle-particle interaction ��p� � p� is illus-
trated in Fig. 1, where p= �p , i�n� with Matsubara frequency
�n= �2n+1��T. In the following, results will be shown for
the reducible interaction in the singlet channel, �s�p� � p�
= 1

2 ���p� � p�+��−p� � p��. In particular, the momentum depen-
dence of �s�p� , i�n� �p , i�n� will be shown at the lowest Mat-
subara frequency �n=�n�=�T. In the ground state and for
U=4t, the dx2−y2-type pairing correlations are most enhanced
near half-filling for t��1.6t.11 When U=8t, this occurs for
t��1.4t. In this paper, the QMC data will be presented using
these two parameter sets for a 2�16 lattice.

The momentum structure in �s�p� � p� depends sensitively
on where p� and p are located with respect to the Fermi
surface. Hence, we will first show results on the single-
particle spectral weight A�p ,��=− 1

� Im G�p ,�+ i	�, where
G is the single-particle Green’s function. Our purpose here is
to find the locations of the Fermi-surface crossing points. We
have obtained A�p ,�� from the QMC data on the single-
particle Green’s function along the Matsubara-time axis by
using the maximum-entropy analytic continuation method.
Figure 2 shows A�p ,�� vs � for T=0.1t, U=4t, t�=1.6t, and
�n	=0.94. Here, we see that the Fermi level crossing for the
antibonding �py =�� band occurs for px between � /8 and
� /4, while for the bonding �py =0� band there is spectral
weight pinned near the Fermi level for 3� /4
 px
� at this
temperature. These results for A�p ,�� are similar to those
presented in Refs. 11 and 14. In the following,
�s�p� , i�T �p , i�T� vs p will be shown for p�= �� /4 ,�� near
the Fermi level and for p�= �0,�� at the saddle point.

Figure 3�a� shows �s(p� , i�T �p , i�T) vs p while p� is
kept fixed at �� /4 ,��. In the left panel, px is scanned from
−� to � for py =0, while in the right panel px is scanned for
py =�. Here, it is seen that repulsive and attractive peaks
develop in �s, as T decreases from 0.25t to 0.1t. In particular,
in the left panel it is seen that when p��−3� /4 ,0� a repul-
sive peak develops in �s, which corresponds to a scattering
process with momentum transfer q��� ,��. In addition, in

the right panel it is observed that a dip develops in �s when
p�p�= �� /4 ,�� corresponding to zero momentum transfer.
This dip is due to resonant scattering in the dx2−y2 wave BCS
channel. In a three-dimensional infinite system, when a
dx2−y2 wave superconducting instability is approached,
�s�p� , i�T �p , i�T� at the Fermi level diverges to +� for
backward scattering, and to −� for forward scattering, which
will be further discussed below. In Fig. 3�a� it is seen that �s
is developing this type of repulsive and attractive peaks at T
of order 0.1t.

Figure 3�b� shows �s�p� , i�T �p , i�T� vs p while p� is
kept fixed at the saddle point �0,��. In this case, �s develops
a peak when p= �±� ,0�, corresponding to scattering with

FIG. 2. �Color online� Single-particle spectral weight A�p ,�� vs
� at various p. The solid and dotted curves represent the bonding
�py =0� and antibonding �py =�� bands, respectively. These results
are for T=0.1t, U=4t, t�=1.6t, and �n	=0.94. The arrows denote
the quasiparticle positions for the U=0 case.

FIG. 3. Reducible particle-particle interaction in the singlet
channel �s�p� , i�T �p , i�T� vs px. Here, px is scanned for py =0 �left
panel� and for py =� �right panel�. In �a�, p� is kept fixed at
�� /4 ,��, while in �b�, p�= �0,��. Here, �s is shown in units of t for
U=4t, t�=1.6t, and �n	=0.94.

BRIEF REPORTS PHYSICAL REVIEW B 74, 132503 �2006�

132503-2



q= �� ,�� momentum transfer. The magnitude of this peak is
comparable to that seen in the left panel of Fig. 3�a�. How-
ever, the behavior for q=0 momentum transfer is different.
As observed in the right panel of Fig. 3�b�, �s for q=0 scat-
tering remains pinned near zero for T down to 0.125t, and
becomes attractive only below this temperature. Hence,
at the saddle point �0,��, the resonant scattering in �s for
q=0 momentum transfer is weaker compared to that at
�� /4 ,��.

Figure 4 shows the T dependence of the backward and
forward scattering components of �s. Here, �s is plotted as a
function of the inverse temperature � for momentum trans-
fers q= �� ,�� and �� /8 ,0�, while p� is kept fixed at
�� /4 ,��. This figure shows that, near the Fermi level, the
backward and forward scattering amplitudes increase rapidly
at low T, becoming an order of magnitude larger than the
bare Coulomb repulsion at T�0.1t.

Figures 3 and 4 display the main features of �s, which can
be summarized as follows: At low T, there are strong
q��� ,�� scatterings over the whole Brillouin zone, while
the q�0 scatterings are most attractive near the Fermi sur-
face. These features were observed at �n	=0.94 and 0.875,
and for U=4t and 8t. The one-loop renormalization-group
�RG� technique is also utilized to obtain the momentum de-
pendence of � in the Hubbard model.17,18 It would be useful
to make comparisons of the QMC and the RG results for the
momentum dependence of � in the ladder case and to relate
the peaks in � with the relevant couplings in the RG calcu-
lations.

In order to determine the strength of the pairing correla-
tions, the Bethe-Salpeter equation for the reducible particle-
particle interaction in the BCS channel,

��

1 − ��

��p� = −
T

N
�
p�

��p�p���G�p���2��p�� , �2�

was solved for �� and the corresponding eigenfunctions
��p , i�n� by using QMC data on � and the single-particle
Green’s function G�p�. For a three-dimensional infinite sys-
tem, when the maximum �� reaches 1, this signals a BCS
instability to a state where the pair wave function has the
form of the corresponding eigenfunction. For a one-
dimensional system, ��’s will always be less than 1, how-

ever, the T dependence of ��’s gives information about the
characteristic temperature scale of the pairing correlations.
For instance, if the maximum eigenvalue reaches 0.9 at some
temperature, then this means that the leading pairing corre-
lations are enhanced by a factor of 10 through repeated
particle-particle scatterings in the BCS channel. Hence, at
this temperature, the system would exhibit strong pairing
fluctuations.19

At low temperatures, the maximum �� of the Bethe-
Salpeter equation corresponds to an eigenfunction d�p , i�n�
which has dx2−y2 type of symmetry in the sense that it
changes sign as p goes from �� ,0� to �0,�� in the Brillouin
zone.14 The temperature evolution of the dx2−y2 wave irreduc-
ible eigenvalue �d is shown in Fig. 5�a� for U=4t and t�

=1.6t. As T decreases, �d grows monotonically reaching 0.75
at T=0.1t for �n	=0.94. The simple extrapolation of these
results suggests that �d will reach 0.9 at T�0.05t for �n	
=0.94. At the temperatures where these calculations were
performed, �d decreases upon doping to �n	=0.875. Because
of the QMC “fermion sign problem,”20 these data were ob-
tained by using parallel computers. Also shown in Fig. 5�b�
is �d for U=8t and t�=1.4t. We find that, at T�0.25t, �d
takes larger values for U=8t than for U=4t. These results
indicate that the dx2−y2 pairing correlations are strong in the
Hubbard ladder.

An important feature of the QMC data presented here is
that, at sufficiently low T, �s near the Fermi level becomes
strongly attractive for q�0 momentum transfers. This is due
to resonant scattering in the dx2−y2 wave BCS channel. In
order to demonstrate this effect, consider the case of an irre-
ducible interaction �I which is independent of frequency and
separable in momentum,

�I�p��p� = �
�

V�g��p��g��p� , �3�

where � denotes the various pairing channels. In this case,
the reducible interaction is given by

��p��p� = �
�

V�

1 − V�P�

g��p��g��p� , �4�

with P�=−�T /N��pg�
2�p� �G�p��2. In general, �I has both at-

tractive and repulsive V�. In Eq. �4�, it is seen that the repul-
sive components become suppressed by repeated scatterings
in the BCS channel, while the attractive components become

FIG. 4. Reducible particle-particle interaction in the singlet
channel �s�p� , i�T �p , i�T� vs the inverse temperature � for back-
ward �q= �� ,��� and forward �q= �� /8 ,0�� scatterings. Here, p
=p�+q and p� is kept fixed at �� /4 ,��. These results are for U
=4t, t�=1.6t, and �n	=0.94.

FIG. 5. d-wave irreducible eigenvalue �d of the Bethe-Salpeter
equation vs T �a� for U=4t and t�=1.6t, and �b� for U=8t and t�

=1.4t. Here, the errorbars are smaller than the size of the symbols.
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enhanced. For the dx2−y2 channel, gd�p�= 1
2 �cos px−cos py�. If

the dx2−y2 component of �I is attractive and becomes suffi-
ciently enhanced, here it is observed that � for q=p�−p
�0 can become attractive. When a dx2−y2 wave BCS insta-
bility is approached, then, at the Fermi surface, �s diverges
to −� for q�0 scatterings and to +� for q��� ,�� scatter-
ings. The important point is that the exact QMC data for �s
also exhibit this type of momentum dependence in the Hub-
bard ladder at temperatures which are not low.

In summary, we have presented QMC data on the reduc-
ible particle-particle interaction �s in order to determine the
strength and the temperature scale of the dx2−y2 pairing cor-
relations in the two-leg Hubbard ladder. We found that �s
displays diverging behavior as the temperature decreases. In
particular, �s exhibits resonant scattering in the dx2−y2 pairing
channel as it would be expected for a system near a dx2−y2

BCS instability. We have also shown results on the solution
of the Bethe-Salpeter equation to quantitatively determine
the strength of the dx2−y2 pairing. The QMC data presented in
this paper indicate that the dx2−y2 pairing correlations in the

Hubbard ladder are strong for certain values of the model
parameters. We note that, for comparison, it would be useful
to investigate the strength of dx2−y2 pairing for a two-leg lad-
der system which includes both onsite Coulomb and
electron-phonon interactions.
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