
Scaling theory for double-gate SOI MOSFET's

著者 田中  徹
journal or
publication title

IEEE Transactions on Electron Devices

volume 40
number 12
page range 2326-2329
year 1993
URL http://hdl.handle.net/10097/47472

doi: 10.1109/16.249482



2326 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 40, NO. 12, DECEMBER 1993 

Scaling Theory for Double-Gate SO1 MOSFET’s 
Kunihiro Suzuki, Member, IEEE, Tetsu Tanaka, Member, IEEE, Yoshiharu Tosaka, Hiroshi Horie, 

and Yoshihiro Arimoto 

Abstruct-We established a scaling theory for double-gate SO1 
MOSFET’s, which gives a guidance for the device design (sili- 
con thickness ts,; gate oxide thickness lox) so that maintaining a 
subthreshold factor for a given gate length LG. According to 
our theory, a device can be designed with a gate length of less 
than 0.1 pm while maintaining the ideal subthreshold factor, 
which is verified numerically with a two-dimensional device 
simulator. 

I. INTRODUCTION 
CCORDING to the Brew’s scaling theory [ l ] ,  the A channel doping concentration in bulk MOSFET’s 

should be increased to alleviate the short-channel effects, 
leading to more than 10” cm-3 for a gate length of less 
than 0.1 pm [2]. This high-doping concentration degrades 
device performance due to decreased mobility and in- 
creased junction capacitance. 

A double-gate SO1 MOSFET, in which the potential is 
controlled by front and back gates as shown in Fig. 1, is 
proposed to circumvent the scaling limitations of bulk 
MOSFET’s. The characteristics of this device have been 
studied [2]-[ll], revealing its ideal subthreshold factor, 
high transconductance, and short-channel effect immu- 
nity. 

Since the potential distribution in double-gate SO1 
MOSFET’s differs greatly from that in bulk and single- 
gate SO1 MOSFET’s because of symmetrical device 
structure with quite low channel doping concentration [4], 
[7], the scaling theory developed for bulk MOSFET’s 
cannot be applied to double-gate SO1 MOSFET’s. 

Yan et al. proposed a unique scaling theory for double- 
gate SO1 MOSFET’s [2]. According to their theory, the 
device should be designed maintaining 

where X I  is the so-called natural length which character- 
izes the short-channel effect and is given by 

where is the dielectric constant of silicon, cox is the 
dielectric constant of silicon dioxide, tSi is the SO1 silicon 
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thickness, and to, is the gate oxide thickness. This natural 
length is an easy guide for choosing device parameters, 
and has simple physical meaning that a small natural 
length corresponds to superb short channel effect immu- 
nity. Although the authors showed that a small a gives a 
degraded S-factor, they did not show whether the same a 
with various device parameters gives the same S-factor. 

Fig. 2(a) shows the dependence of S-factor on a1 cal- 
culated using a two-dimensional device simulator [ 121. 
Although a smaller al gives a larger S-factor, the same al 
with various combinations of device parameters does not 
give the same S-factor, that is, the theory does not provide 
the same guideline for different gate lengths. 

The onset point where the S-factor degrades does not 
depend on the drain voltage, V,, although the value of the 
S-factor after degradation strongly depends on V,. Since 
the purpose of our analysis is to clarify the onset point, 
we restricted our analysis to V, = 0.05 V unless speci- 
fied. 

Yan et al. [2] assumed that the punchthrough current 
flows along the surface, which is invalid for a double-gate 
SO1 MOSFET for the following reasons. 

The maximum potential at the SO1 center, 4c, is more 
sensitive to gate length than that at the surface, rbs, and, 
furthermore, the absolute value of +c is smaller than that 
of +s (Fig. 3), meaning that the punchthrough current 
dominantly flows at the SO1 center. 

In this paper, we derive a scaling theory relevant to 4c, 
and show that our scaling theory acts as a guide to design 
devices that hold proper S-factors. 

11. THEORY 
The Poisson equation of potential, 4,  is [13] 

(3) 

where NA is the channel doping concentration, and the y -  
axis is perpendicular and the x-axis is parallel to the chan- 
nel (Fig. 1). 

Using the same parabolic potential profile in the verti- 
cal direction as Young used [13] and applying the bound- 
ary condition of d @ / d y  = 0 for y = tsi/2, we obtained 
the same 4(x,  y )  as that in [2] given by 

d24(., Y )  d24(., Y )  SNA 
ak2 +-=- dY2 €si 

(4) 
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Fig. 1 .  Double-gate MOSFET. 
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Fig. 2 .  Dependence of subthreshold factor on the scaling parameter: (a) 
former model; (b) proposed model. 

where VG is the gate voltage and VFB is the flatband volt- 
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Fig. 3 .  Potential distribution along channel at the surface, @*, and at the 
center of SOI, 4 ~ ~ .  

by substituting y = tSi/2 as 

L I  

4 ~ s i  lox 

and then expressed $(x, y) using +c as 

€ox Y €ox 

€si fox €si toxtsi 
1 + -- - -2- 

cox t,i 1 + - -  
46si lox 

(VG - VFB) + - - (VG - VFB). 
fox Y €0, Y2  --- 
€si fox €si foxtsi 

(6) 
Substituting (6) into (3), we obtain 

age. 
(7) Since 4, should be relevant to the punchthrough cur- d24,(x) + Vc - VFB - +AX) - @A 

rent, we obtained the relation between 4s and 4c from (4) dx2 A: €si 
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Fig. 4 .  Relationship between silicon thickness and gate oxide thickness 
with various gate lengths alleviating short channel effect. 

where h2 is the natural length having the same physical 
meaning as XI and is 

Note that h2 is always larger than X I ,  that is, the double- 
gate SO1 MOSFET suffers from the short-channel effect 
more than predicted by Yan’s model [2]. 

Exactly the same analysis as in [2] is then followed. 
The key conclusion from this analysis is that the same a2 
leads to the same S-factor, where 

(9) 

111. RESULTS AND DISCUSSION 
Throughout this analysis, we fixed NA to 1015 cmP3 and 

VFB to 0.29 V which corresponds to p+ polysilicon gate. 
The threshold voltage is about 1.0 V independent of de- 
vice parameters and the S-factor is also independent of VG 
in the subthreshold region when it has almost ideal value 
[14]. We evaluated S-factor for VG = 0.7 V. 

Fig. 2(b) shows the dependence of the S-factor on a2 
calculated using a two-dimensional device simulator [ 121. 
The same a2 leads to the same value of S-factor with var- 
ious combinations of device parameters, to,, t s i ,  and LG. 
We found that an a2 of less than 3 is needed to alleviate 
the punchthrough, that is, short-channel effect. 

Once a2 is determined from Fig. 2 (b), the relationship 
between to, and tSi is expressed from (9) as 

to, and tsi at a given LG should be designed in the lower 
region of the corresponding L G  curve in Fig. 4. As L G  
decreases, the allowable region decreases. When L G  = 
0.1 pm with to, = 5 nm, tsi should be less than 25 nm, 
and when L G  = 0.05 pm with to, = 3 nm, tSi should be 
less than 10 nm. 
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Fig. 5 .  Subthreshold characteristics with various silicon thickness. Solid 
lines correspond to the devices adhering to the scaling rule and dashed lines 
to those not doing so. 

Fig. 5 shows the subthreshold characteristics of the de- 
vices for L G  = 0.1 pm, where solid lines correspond to 
a2 > 3 and dashed lines to a2 < 3 and V, = 1 .O V which 
may be the supply voltage for L G  = 0.1 pm. We can ex- 
pect almost an ideal S-factor with the device if we design 
the devices so that a2 is more than 3 .  We also verified the 
same numerical results with the device for LG = 0.05 pm. 

IV. SUMMARY 
We derived a natural length relevant to the scaling the- 

ory for double-gate SO1 MOSFET’s, and described how 
to design to, and tsi for a given gate length maintaining a 
proper S-factor. According to the theory, almost the ideal 
S-factor value can be expected even with L G  of less than 
0.1 pm. The key factor that determines the shortest gate 
length device we can design is the thinnest tsi we can pro- 
duce. A tsi of less than IO nm is needed at L G  = 0.05 pm 
with to, = 3 nm. 
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