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This paper proposes a new unified framework for the adaptive IIR band-pass/band-stop filtering for detection
and enhancement/suppression of an unknown narrowband signal immersed in a broadband signal. In most of the
conventional methods, which are well-known as the adaptive notch filtering, the adaptive band-pass/band-stop
filter is restricted to a low-order transfer function. On the other hand, our proposed method can be applied to
arbitrary high-order band-pass/band-stop transfer functions in a simple manner. We derive this simple adaptive
mechanism with the help of the frequency transformation and its block diagram representation. In addition, we
prove that this result includes the conventional all-pass-based adaptive notch filters as special cases. Moreover, we
demonstrate a significant property that the use of high-order adaptive band-pass/band-stop filters yields much
better signal-to-noise ratio (SNR) improvement than the conventional low-order filters.
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1. Introduction

Adaptive band-pass filtering and adaptive band-stop filtering are important fundamental techniques for detection and
enhancement/suppression of unknown narrowband signals immersed in a broadband (white) signal. These techniques
play central roles in many practical applications of digital signal processing. Such practical applications include the
adaptive line enhancer, the howling suppression in audio/speech precessing, the narrowband interference suppression
in communication systems, and the detection of harmonic signals in power-electronic devices.

Over the years, a number of methods have been proposed for designing and realizing adaptive band-pass/band-stop
filters. Among such methods, adaptive IIR notch filtering [1–11] has particularly attracted many researchers because it
is very simple and thus easy to implement. This simplicity comes from the use of simple transfer functions. That is, the
adaptive filter is given by the IIR band-pass/band-stop transfer functions of the lowest order. To be more precise, in
order to detect a single narrowband signal, second-order functions are used for real coefficient filters and first-order
functions are used for complex coefficient filters.

Although such adaptive band-pass/band-stop filtering based on low-order transfer functions is very tractable, it has a
serious drawback from the viewpoint of the signal-to-noise ratio (SNR) at the filter output. Figure 1(a) illustrates this
problem in the case of adaptive band-pass filtering for enhancement of an unknown narrowband signal. As is well-
known, low-order band-pass filters cannot provide so sharp cutoff characteristic in the magnitude response. Due to this
poor cutoff characteristic, low-order band-pass filters have poor ability to capture the entire narrowband signal and, in
addition, they pass undesirable white noise out of the frequency region of the narrowband signal. Hence, the use of low-
order transfer functions results in low SNR at the filter output. On the other hand, if we can use a higher-order filter as
the adaptive filter, the output SNR is expected to be much more improved than the low-order case because of the
sharper cutoff characteristic of the higher-order filter, as shown in Fig. 1(b).

Motivated by this observation, in this paper we focus on the approach of the high-order adaptive IIR band-pass/
band-stop filtering. This approach has not been well studied so far: To the best of our knowledge, only Kumar and Pal
[12–15] attempted this approach, and they proposed an adaptive filtering algorithm based on the fourth-order
Butterworth band-pass/band-stop filter. Although they claimed that their method can be applied to any other filter, they
also pointed out that mathematical description of higher-order filters is very complicated and, therefore, they stated that
efficient description of high-order adaptive band-pass/band-stop filtering may not be possible. Due to this fact, efficient
adaptive control of band-pass/band-stop filters of arbitrary order has still been an open problem, and thus no detailed
discussion has been given regarding how the choice of the filter order is related to the SNR improvement.
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In this paper, we achieve the above-mentioned challenging tasks. That is, the main contributions of this paper are the
following.
(1) We propose a unified mathematical framework for adaptive filtering based on arbitrary band-pass/band-stop

transfer functions. To this end, we first derive a simple time-domain filtering algorithm for arbitrary band-pass/
band-stop filters with variable (tunable) center frequency. This simple algorithm is obtained with the help of the
frequency transformation [16] and its block-diagram representation. Next we extend this result and obtain a
gradient-based adaptive algorithm that can be applied to arbitrary band-pass/band-stop transfer functions. We
also prove that our proposed method includes the conventional all-pass-based adaptive notch filters as special
cases. These results are presented in §3.

(2) In §4, we give a simulation example and demonstrate that our proposed high-order adaptive band-pass/band-stop
filtering attains higher output SNR at steady-state than the conventional low-order methods including the adaptive
notch filtering.

2. Adaptive Band-Pass/Band-Stop Filtering

This section reviews the basic concepts of the adaptive band-pass/band-stop filtering.
The adaptive filter configuration to be considered is shown in Fig. 2, which is the same as in [12–15]. This

configuration can be also seen in most of the literature on the adaptive notch filtering. The input signal uðnÞ is given by

uðnÞ ¼ unðnÞ þ ubðnÞ ð2:1Þ

where unðnÞ is a narrowband signal of which frequency component is unknown, and ubðnÞ is a broadband signal that is
white and uncorrelated with unðnÞ. The output signal is denoted by yðnÞ, and its mean-square value E½y2ðnÞ� is used as
the cost function for adaptation.

As in [12–15], we assume that the bandwidth of the narrowband signal unðnÞ is known a priori, and that the adaptive
band-pass/band-stop filter has the fixed pass-bandwidth/stop-bandwidth. The latter assumption means that only the
center frequency of the filter pass-band/stop-band is variable and controlled by an adaptation mechanism.
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Fig. 1. Adaptive band-pass filtering: (a) based on low-order transfer function, and (b) based on high-order transfer function.

Adaptive band-pass filter
(Adaptive band-stop filter)

Fig. 2. Block diagram of adaptive band-pass/band-stop filtering.
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3. Proposed Method

The strategy of our proposed adaptive IIR band-pass/band-stop filtering is outlined as follows.
Step 1. Design an IIR band-pass/band-stop filter with variable center frequency according to a prescribed filter

specification.
Step 2. Derive a simple time-domain filtering algorithm for the transfer function of the designed variable band-pass/

band-stop filter.
Step 3. Using this filtering algorithm, derive a gradient-based adaptive algorithm that controls the center frequency of

the filter.
In the sequel, we present the details of this strategy for both the band-pass case and the band-stop case. Also, we prove
that this method includes the conventional all-pass-based adaptive notch filters as special cases.

3.1 Proposed method: Band-pass case

In Step 1, we make use of the frequency transformation [16] to design an arbitrary IIR band-pass/band-stop filter
with variable center frequency. This is a well-known technique for design of digital filters from a given prototype low-
pass filter by means of a simple transformation. Hence we first need to give the transfer function HpðzÞ of a stable
prototype low-pass filter as follows:

HpðzÞ ¼
PN

j¼0 bjz
� j

1þ
PN

i¼1 aiz
�i

ð3:1Þ

where N is the order of HpðzÞ and ai’s and bj’s are the denominator coefficients and the numerator coefficients,
respectively. These coefficients are determined in such a manner that the pass-bandwidth of this low-pass filter is equal
to that of the desired variable band-pass filter. Needless to say, this is easily achieved by using the classical theory of
digital filter design. Then, by means of the frequency transformation, the transfer function of the desired band-pass filter
is obtained as follows:

HBPðz; �Þ ¼ HpðzÞjz�1 TBPðz;�Þ ð3:2Þ

where TBPðz; �Þ is the second-order all-pass function of the form

TBPðz; �Þ ¼ �z�1 z�1 � �
1� �z�1

; � ¼ cos!0 ð3:3Þ

and !0 is the center frequency of the variable band-pass filter. This type of frequency transformation is a specific low-
pass-to-band-pass (LP-BP) transformation. Note that the order of HBPðz; �Þ is 2N because TBPðz; �Þ is the second-order
function. Also, note that the stability of HBPðz; �Þ is ensured for any !0 satisfying 0 < !0 < � (i.e., for any � satisfying
�1 < � < 1) if the prototype filter HpðzÞ is stable. The center frequency !0 is related to the cutoff frequencies of
HBPðz; �Þ as

cos!0 ¼ cos
!2 þ !1

2

� � �
cos

!2 � !1

2

� �
ð3:4Þ

where !1 and !2 denote the lower and upper cutoff frequencies of HBPðz; �Þ, respectively. Note that the LP-BP
transformation based on (3.3) forces the pass-bandwidth of HBPðz; �Þ to be equal to the pass-bandwidth of HpðzÞ, and
thus HBPðz; �Þ has the fixed bandwidth. In view of (3.2) and (3.3), it readily follows that the center frequency !0 is
controlled by the parameter �. An example of HBPðz; �Þ is shown in Fig. 3.

1

–1

0> 0      < 0

Normalized frequency 

M
ag

ni
tu

de

0

Fig. 3. Variable band-pass filter HBPðz; �Þ with fixed bandwidth and variable center frequency.
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Next we present the details of Step 2. The key point here is that we will derive a time-domain filtering algorithm for
HBPðz; �Þ by using the components of HpðzÞ and TBPðz; �Þ, rather than directly using the coefficients of the final
composite function HBPðz; �Þ. To this end, we obtain the filter structure of HBPðz; �Þ from the block-diagram
representation of (3.2). Figure 4 shows this strategy based on the direct form II structure. As is well-known, the LP-BP
transformation of (3.2)–(3.3) is realized by replacing each delay element of the prototype filter shown in Fig. 4(a) with
the second-order all-pass filter TBPðz; �Þ, which yields the desired band-pass filter as in Fig. 4(b). Here, note that this
replacement does not yield delay-free loops in the filter structure because the all-pass function given by (3.3) does not
have a direct feedthrough term. Now, on the basis of Fig. 4 we derive the simple time-domain filtering algorithm for
HBPðz; �Þ. First, we introduce internal variables v0ðnÞ, viðnÞ and wiðnÞ for 1 � i � N into Fig. 4(b). In this figure, the
variables v0ðnÞ and viðnÞ respectively correspond to the input to the all-pass filter at the first stage and the output of the
i-th all-pass filter. The variable wiðnÞ is the input to the first delay element of the i-th all-pass filter. From these
relationships we can easily obtain the following time-domain filtering algorithm:

(a)

(b)

Fig. 4. LP-BP transformation: (a) prototype filter HpðzÞ, and (b) desired band-pass filter HBPðz; �Þ.
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viðnÞ ¼ �wiðn� 1Þ � wiðn� 2Þ for 1 � i � N;

v0ðnÞ ¼ �
XN
j¼1

ajvjðnÞ þ uðnÞ

wiðnÞ ¼ �wiðn� 1Þ þ vi�1ðnÞ for 1 � i � N;

yðnÞ ¼
XN
i¼0

biviðnÞ: ð3:5Þ

Obviously, this filtering algorithm allows us to easily calculate the output yðnÞ of the band-pass filter for arbitrary
parameter �.

We next present the details of Step 3 for derivation of an adaptive algorithm. As was explained in §2, the mean-
square value of the filter output, denoted by E½y2ðnÞ�, is considered here. In the band-pass case, the adaptation aims
to find the optimal value of the tuning parameter � that maximizes E½y2ðnÞ�: This is the same approach as in [12–15].
Now, based on the concept of the LMS algorithm, the update equation for the adaptive band-pass filtering can be given
by

�ðnþ 1Þ ¼ �ðnÞ þ �
@yðnÞ
@�ðnÞ

yðnÞ ð3:6Þ

where � is the adaptation step size and �ðnÞ is the center-frequency-tuning parameter at time n. From (3.5), the partial
derivative @yðnÞ=@�ðnÞ is described as

@yðnÞ
@�ðnÞ

¼
XN
i¼0

bi vi ðnÞ ð3:7Þ

where

 viðnÞ �
@viðnÞ
@�ðnÞ

¼
@

@�ðnÞ
ð�ðnÞwiðn� 1Þ � wiðn� 2ÞÞ

¼ wiðn� 1Þ þ �ðnÞ
@wiðn� 1Þ
@�ðnÞ

�
@wiðn� 2Þ
@�ðnÞ

for 1 � i � N; ð3:8Þ

 v0
ðnÞ �

@v0ðnÞ
@�ðnÞ

¼ �
XN
j¼1

aj vj ðnÞ: ð3:9Þ

Here, in a similar manner to the derivation of the LMS algorithm for IIR filters [17], we define

 wi
ðnÞ �

@wiðnÞ
�ðnÞ

¼
@

@�ðnÞ
ð�ðnÞwiðn� 1Þ þ vi�1ðnÞÞ

¼ wiðn� 1Þ þ �ðnÞ
@wiðn� 1Þ
@�ðnÞ

þ  vi�1
ðnÞ

for 1 � i � N; ð3:10Þ
and make the following approximation

@wiðn� kÞ
@�ðkÞ

’
@wiðn� kÞ
@�ðn� kÞ

¼  wi
ðn� kÞ for k ¼ 1; 2; ð3:11Þ

under the assumption of a sufficiently small step size. Then we can rewrite (3.10) as the following recursive difference
equation

 wi
ðnÞ ’ wiðn� 1Þ þ �ðnÞ wi

ðn� 1Þ þ  vi�1
ðnÞ

for 1 � i � N; ð3:12Þ
from which we can also rewrite (3.8) as
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 viðnÞ ’ wiðn� 1Þ þ �ðnÞ wi
ðn� 1Þ �  wi

ðn� 2Þ
for 1 � i � N: ð3:13Þ

From (3.6)–(3.13), we now present the update equation for computing the center-frequency-tuning parameter as
follows:

�ðnþ 1Þ ¼ �ðnÞ þ � yðnÞyðnÞ

 yðnÞ ¼
XN
i¼0

bi viðnÞ

 vi ðnÞ ¼ wiðn� 1Þ þ �ðnÞ wi
ðn� 1Þ �  wi

ðn� 2Þ
for 1 � i � N;

 v0
ðnÞ ¼ �

XN
j¼1

aj vjðnÞ

 wi
ðnÞ ¼ wiðn� 1Þ þ �ðnÞ wi

ðn� 1Þ þ  vi�1
ðnÞ

for 1 � i � N: ð3:14Þ
Note that this adaptive algorithm can easily tackle the stability problem for the variable band-pass filter: As stated
earlier, the frequency transformation ensures the stability of the variable band-pass filter for any �ðnÞ satisfying
�1 < �ðnÞ < 1, and thus it suffices to carry out the adaptation under the constraint of �1 < �ðnÞ < 1. This constraint
does not limit the tuning range of the center frequency because of the relationship of �ðnÞ ¼ cos!0ðnÞ.

Before concluding this subsection, we discuss the advantages of our proposed algorithm in comparison with the
conventional high-order-based methods [12–15]. We point out the advantages from the following two aspects.
(1) Our filtering algorithm (3.5) and our adaptive algorithm (3.14) can be easily applied to realization and adaptation

of any kind of high-order variable band-pass filter. On the other hand, in the conventional methods [12–15]
derivation of a different set of filtering algorithms is required for every other filter order and other filter type.

(2) Our filtering algorithm (3.5) can tune the center-frequency and the bandwidth of the band-pass filter
independently. For example, if there is a need to change the filter bandwidth, only the coefficients ai’s and bj’s of
the prototype low-pass filter HpðzÞ are recalculated� and thus we do not have to rewrite the expression of (3.5).
Similarly, if the center-frequency is changed, only the parameter � is changed and the coefficients ai’s and bj’s
remain fixed. On the other hand, in the conventional methods it was claimed in [15] that efficient description of
high-order transfer functions with a single center-frequency dependent parameter may not be possible.

3.2 Proposed method: Band-stop case

The adaptive mechanism based on a variable band-stop filter can be constructed in an analogous fashion to the band-
pass case. In Step 1, we prepare the transfer function HpðzÞ of an N-th order prototype low-pass filter as in (3.1), in such
a manner that the stop-bandwidth of this filter is equal to the desired variable band-stop filter. Then we perform the
following low-pass-to-band-stop (LP–BS) transformation

HBSðz; �Þ ¼ HpðzÞjz�1 TBSðz;�Þ ð3:15Þ

TBSðz; �Þ ¼ z�1 z�1 � �
1� �z�1

; � ¼ cos!0 ð3:16Þ

where HBSðz; �Þ is the transfer function of the desired variable band-stop filter of order 2N, and � is the parameter that
tunes the center frequency !0 of the stopband. As in the band-pass case, the center frequency !0 satisfies the
relationship of (3.4), and the stop-bandwidth is fixed. In addition, if HpðzÞ is stable, HBSðz; �Þ is also stable for any �
satisfying �1 < � < 1.

In Step 2, the time-domain filtering algorithm for HBSðz; �Þ can be easily obtained by simply replacing the block
diagram of TBPðz; �Þ in Fig. 4(b) with that of TBSðz; �Þ. Therefore, the resultant filtering algorithm is given as follows:

viðnÞ ¼ ��wiðn� 1Þ þ wiðn� 2Þ for 1 � i � N;

v0ðnÞ ¼ �
XN
j¼1

ajvjðnÞ þ uðnÞ

wiðnÞ ¼ �wiðn� 1Þ þ vi�1ðnÞ for 1 � i � N;

yðnÞ ¼
XN
i¼0

biviðnÞ: ð3:17Þ

�An easy way to achieve this is to apply the LP–LP transformation to HpðzÞ. Since the choice of the filter bandwidth is beyond the scope of this paper,

details on this topic are omitted here.

168 KOSHITA et al.



In Step 3, we consider the mean-square output E½y2ðnÞ� as the cost function, which is the same as in the band-pass
case. However, the adaptive algorithm to be derived here attempts to minimize this cost function, and thus we consider
the following update equation

�ðnþ 1Þ ¼ �ðnÞ � �
@yðnÞ
@�ðnÞ

yðnÞ: ð3:18Þ

Applying the relationship of (3.17) to (3.18) with the help of the derivation procedure in the band-pass case, we finally
obtain the adaptive aglrotihm for computation of �ðnþ 1Þ as

�ðnþ 1Þ ¼ �ðnÞ � � yðnÞyðnÞ

 yðnÞ ¼
XN
i¼0

bi viðnÞ

 viðnÞ ¼ �wiðn� 1Þ � �ðnÞ wi
ðn� 1Þ þ  wi

ðn� 2Þ
for 1 � i � N;

 v0
ðnÞ ¼ �

XN
j¼1

aj vj ðnÞ

 wi
ðnÞ ¼ wiðn� 1Þ þ �ðnÞ wi

ðn� 1Þ þ  vi�1
ðnÞ

for 1 � i � N: ð3:19Þ

It readily follows that the filtering algorithm (3.17) and the adaptive algorithm (3.19) have the same advantages as
discussed in the band-pass case.

3.3 Relation to adaptive notch filtering

In this subsection we point out that our proposed method includes some class of the conventional adaptive notch
filters as special cases. The adaptive notch filters to be discussed here are designed by second-order all-pass filters
[1, 4, 7]. Such notch filters are divided into two types and we address their relationship to our method in the following
two remarks.

Remark 3.1. A class of the all-pass-based adaptive notch filters makes use of the following transfer function [1, 4]

HnotchðzÞ ¼
1þ �

2

1� 2�z�1 þ z�2

1� ð1þ �Þ�z�1 þ �z�2
ð3:20Þ

where the parameters � and � determine the notch-bandwidth and the notch-frequency, respectively. This transfer
function has been widely used in many methods on the adaptive notch filtering. This transfer function can be easily
derived from the LP-BS transformation as follows. First, we choose the prototype low-pass filter as the following first-
order transfer function

HpðzÞ ¼
1þ �

2

1þ z�1

1þ �z�1
: ð3:21Þ

It is interesting to note that this transfer function coincides with the first-order Butterworth low-pass filter of which
cutoff frequency (i.e., 3-dB bandwidth) is determined by the parameter �. Applying the LP-BS transformation (3.15)–
(3.16) to (3.21), we obtain the following second-order Butterworth band-stop filter

HBSðz; �Þ ¼
1þ �

2

1� 2�z�1 þ z�2

1� ð1þ �Þ�z�1 þ �z�2
: ð3:22Þ

Needless to say, this transfer function is equal to (3.20). Hence it follows that this type of adaptive notch filtering is a
special case of our proposed method. Note that this type of all-pass-based adaptive notch filtering can construct the
second-order band-pass filter as well as the aforementioned notch filter. This band-pass filter can be easily derived by
applying the LP-BP transformation (3.2)–(3.3) to (3.21). Hence the conventional adaptive filtering based on the all-
pass-based second-order band-pass filter is also included in our proposed method as a special case.

Remark 3.2. In [7], another type of all-pass-based adaptive notch filtering is proposed. This method uses the
following transfer function

HnotchðzÞ ¼
1� 2�z�1 þ z�2

1� ð1þ �Þ�z�1 þ �z�2
ð3:23Þ

which is slightly different from (3.20). As is explained in [7], this notch filter is derived by applying the LP-BS
transformation (3.15)–(3.16) to the following prototype filter

Adaptive IIR Band-Pass/Band-Stop Filtering Using High-Order Transfer Function and Frequency Transformation 169



HpðzÞ ¼
1þ z�1

1þ �z�1
: ð3:24Þ

Therefore, this type of adaptive notch filtering is also included in our proposed method as a special case.

4. Simulation and Discussion

In this section, we first give a simulation example to demonstrate the utility of our proposed method in terms of the
SNR. Next we give another comparison of our proposed method with conventional approaches in terms of the number
of multiplications required to the adaptive filtering. We also discuss the trade off between the filter order and the
complexity in our proposed method.

4.1 Simulation example

The simulation example to be given here is the adaptive band-pass filtering for detection and enhancement of a
narrowband signal. Thus we consider the system of Fig. 2 based on an adaptive band-pass filter. The input signal uðnÞ is
given by (2.1), where the broadband signal ubðnÞ is a zero-mean white Gaussian noise and the narrowband signal unðnÞ
has the center frequency of 0:3� rad and the bandwidth of 0:15� rad. We generate this narrowband signal by passing a
zero-mean white Gaussian sequence that is uncorrelated with ubðnÞ through the FIR Hamming weighted band-pass filter
of length 64, where its center frequency and bandwidth are set to be the same as those of the narrowband signal. The
variances of these two white Gaussian sequences are determined in such a manner that the input SNR becomes 0 dB.
For the transfer function of HBPðz; �Þ, we use the 2nd-order, 4th-order, and 6th-order Butterworth band-pass filters, and
the bandwidth of these three filters are set to be 0:15� rad. This means that the corresponding prototype low-pass filters
are respectively the 1st-order, 2nd-order, and 3rd-order Butterworth low-pass filters of which cutoff frequencies are
0:15� rad. The initial values of the tuning parameter of these filters are specified as �ð0Þ ¼ 0. Hence the corresponding
initial center frequency !0 is 0:5� rad. The step size parameter is set to be � ¼ 0:0005 for all of these filters.

Figure 5 shows the center-frequency estimates, i.e., the trajectories of !0 for the three adaptive band-pass filters.
Each result is obtained from a single run of the adaptation algorithm. From this figure we see that all of the three
adaptive band-pass filters successfully find the narrowband signal.

Table 1 shows the output SNR for the three adaptive band-pass filters at the steady state. These values are calculated
from 10000 samples after convergence of the adaptive algorithm. As was pointed out in §1, this result is due to the fact
that high-order filters yield sharper cutoff characteristics and thus they can process a narrowband signal more accurately
than low-order ones. Therefore, from the viewpoint of the SNR improvement, it is quite advantageous to use high-order
adaptive band-pass/band-stop filters.

However, we also see from Fig. 5 that the convergence speed becomes slower as the filter order increases. This is
a drawback of our proposed method, and the reason for this is apparent: Higher filter order (i.e., sharper cutoff
characteristic) yields almost a flat magnitude characteristic at the stopband, which unfortunately causes the magnitude
of the gradient to be very small if !0 is far from the location of the narrowband signal. Therefore, improvement of the
convergence speed is one of our future tasks.
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Fig. 5. Frequency estimates for 2nd-order, 4th-order, and 6th-order adaptive band-pass filters.

Table 1. Output SNR for 2nd-order, 4th-order, and 6th-order adaptive band-pass filters.

2nd-order 4th-order 6th-order

Output SNR [dB] 6.5388 7.7153 8.0605
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4.2 Performance comparison on computational complexity

Here we first compare our proposed method with conventional low-order-based approaches from the viewpoint of
computational complexity. To be specific, we analyze the number of multiplications that are required to the adaptive
filtering in our proposed method. As is well-known in the field of digital filters, the number of multiplications highly
dominates the computational time and the hardware complexity of a filter. Hence in this paper we focus on the
comparison in terms of the number of multiplications per sampling interval.

In the band-pass case, the number of multiplications per sampling interval in our proposed adaptive filtering is
determined from (3.5) and (3.14). It is not difficult to show that (3.5) requires 3N þ 1 multiplications and (3.14)
requires 3N þ 3 multiplications, where N denotes the order of the prototype low-pass filter (i.e., the order of the
adaptive band-pass filter is 2N). Therefore, our proposed adaptive band-pass filtering requires 6N þ 4 multiplications.
Here, it should be noted that the total number of multiplications in conventional approaches becomes 10 because the
conventional approaches make use of a first-order prototype filter (i.e., a second-order adaptive band-pass filter).
Although N becomes larger in our proposed method than conventional approaches, this is not a serious problem: The
required number of multiplications is just OðNÞ, and the value of N does not become too large in practical situations
because IIR filters are used.

We finally address the trade off between the filter order and the complexity in our proposed method. From the
aforementioned analysis it is clear that the number of multiplications increases as OðNÞ. This fact shows that, as the
filter order N increases, the computational time and the hardware complexity in our proposed method also increase as
OðNÞ. However this result does not become a serious problem because of the reason mentioned above.

In the band-stop case, the same conclusions as the band-pass case can be easily derived.

5. Conclusion

This paper has presented a new approach to the adaptive IIR band-pass/band-stop filtering for detection and
enhancement/suppression of an unknown narrowband signal. Most of the conventional methods had to rely on low-
order transfer functions because mathematical description for adaptation of high-order band-pass/band-stop filters had
been a very difficult task, as was earlier pointed out in [12–15]. On the other hand, our proposed method can be easily
applied to arbitrary high-order band-pass/band-stop transfer functions, with the help of the frequency transformation
and its block diagram representation. In addition, we have proved that our proposed method includes the conventional
all-pass-based adaptive notch filters as special cases. Furthermore, in a simulation example we have demonstrated that
the use of high-order adaptive filters yields better SNR improvement than low-order ones.

These results also show the utility of our proposed method from the viewpoint of practical applications such as
audio/speech processing, communication systems, and power-electronic devices. These applications require enhance-
ment or suppression of a narrowband signal in a broadband signal, and the conventional approaches based on low-order
filters lead to low signal quality because of the low SNR. On the other hand, our proposed method gives higher
performance in terms of the SNR than the conventional methods. Therefore, our proposed method can be considered as
a promising technique for improvement of signal quality in these practical applications.

There are some open problems in our proposed method. As stated in the previous section, one of them is
improvement of the convergence speed for high-order filters. Another problem that should be investigated is theoretical
analysis of the output SNR with respect to the filter order. In addition, consideration of the quantization effects is also
very important because our proposed method is currently applicable to only the direct-form structure, which is very
sensitive to the quantization effects. We are now investigating all of these problems, and the results will appear in
the future.
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