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Counting the number of N-step self-avoiding walks (SAWs) on a lattice is one of the most difficult problems of
enumerative combinatorics. Once we give up calculating the exact number of them, however, we have a chance to
apply powerful computational methods of statistical mechanics to this problem. In this paper, we develop a
statistical enumeration method for SAWs using the multicanonical Monte Carlo method. A key part of this method
is to expand the configuration space of SAWs to random walks, the exact number of which is known. Using this
method, we estimate a number of N-step SAWs on a square lattice, cN , up to N ¼ 256. The value of c256 is
5:6ð1Þ � 10108 (the number in the parentheses is the statistical error of the last digit) and this is larger than one
googol (10100).
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1. Introduction

Starting from the origin of a lattice and connecting a line to one neighboring site after another, we get a path. If we
choose a random direction for each step, the path becomes a random walk. The question we seek to answer is ‘‘How
many N-step random walks are there on a square lattice?’’ Since there are four possible directions for each step, the
answer is 4N . If we restrict the path by limiting visits to the same site, we get a self-avoiding walk (SAW) instead of a
random walk. We then ask the similar question. ‘‘How many N-step SAWs are there on a square lattice?’’ The answer,
however, is not so simple as with random walks. The number of SAWs, cN , is not known for large values of N. There
are some sophisticated enumeration methods for SAWs and exact values for cN on a square lattice are known only up to
N ¼ 71 [1]. The enumerated cN of N ¼ 71 is

c71 ¼ 4 190 893 020 903 935 054 619 120 005 916 � 4:19� 1030;

which is much larger than Avogadro’s constant. In order to go further, we change the problem from calculating all
digits of cN to estimating the first two or three digits of cN . How large a cN can we estimate? Here, we set a tentative
goal of a googol (10100).

One popular strategy in enumeration is divide and conquer. We propose, however, a different strategy to estimate a
large cN , in which we expand the configuration space of SAWs to that of random walks and use knowledge of the
number of random walks. In order to explain how to use this exact number, we describe a statistical method of
estimating the area of a unit circle using Monte Carlo integration as an example. In Fig. 1(a), we show a unit circle
surrounded by a square, the area of which is exactly 4. To calculate the area of the circle, we randomly generate n

points on the square using pairs of real random numbers (r1; r2) (�1 � r1; r2 � 1) and count the number of pairs which
satisfy the condition x2 þ y2 � 1. Let this number be nc. Using nc and n, we can estimate the area ratio of the circle to
the square. Since we know that the area of the square is 4, we can finally estimate the area of the unit circle as 4� nc=n.
Let us apply this logic to the estimation of cN .

In Fig. 1(b), we show a Venn diagram of SAWs and random walks. The number of N-step random walks on a
d-dimensional hypercubic lattice is exactly known as ð2dÞN . Instead of generating random points as in the above
example, we use Markov chain Monte Carlo (MCMC) to calculate the ratio of the number of SAWs to that of random
walks. Once we obtain the ratio, we can estimate cN by multiplying the ratio by ð2dÞN .
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2. The Statistical Enumeration Method for Self-Avoiding Walks

2.1 SAWs are rare random walks

We define a SAW on a d-dimensional hypercubic lattice and its mathematical notation. We denote an N-step path as
! ¼ ð!ð0Þ; !ð1Þ; . . . ; !ðNÞÞ, where each of !ðiÞ (i ¼ 0; 1; . . . ;N) denotes a point which is randomly selected from the
lattice. When we impose two conditions, namely (i) !ð0Þ is at the origin of the lattice, and (ii) j!ðiþ 1Þ � !ðiÞj ¼ 1

(i ¼ 0; 1; . . . ;N � 1Þ on !, ! becomes an N-step random walk. If we add one more condition (iii) !ðiÞ 6¼ !ð jÞ (i 6¼ j) on
!, ! becomes an N-step SAW [2]. It is obvious from the definition of a SAW that the set of N-step SAWs is a subset of
that of N-step random walks. SAWs are known as n! 0 limit of n-vector model and have attracted a great interest of
physicists in the context of critical phenomena. As we mentioned above, we expand the configuration space of SAWs to
that of random walks and try to sample SAWs using MCMC.

Before we move on to the sampling method, we would like to discuss how rare SAWs are. The asymptotic behavior
of cN is conjectured to be

cN ¼ A�NN��1½1þ oð1Þ�; ð2:1Þ

where � is called the connective constant, which is known to be �2:64 [1]. � is a critical exponent, which is thought
to be universal. Namely, it depends only on the spatial dimensionality and it is independent of the lattice type. In order
to roughly estimate the ratio of the number of SAWs to that of random walks on a square lattice, we use the
approximation
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Even with N ¼ 50, SAWs are very rare, and if we randomly generate random walks, we need about 109 samples to
get one SAW. In the case of N ¼ 250, SAWs become extremely rare and we cannot get one SAW by random sampling
even if we use the massive computer resources available today. Thus, we need a more efficient sampling method.

2.2 Dividing the configuration space of random walks by the number of intersections

As a first step towards an efficient sampling method, we introduce the number of intersections V as a parameter. In
Fig. 2, we show a configuration of a random walk with three intersections, as an example. If k points of a path (k � 3)
are on the same site, we define that there are k � 1 intersections on that site. We divide the configuration space into N

parts (V ¼ 0; 1; 2; . . . ;N � 1) according to the value of V , and configurations with V ¼ 0 are all SAWs. If we introduce
the energy of random walks by V , we get the modified Domb–Joyce model [3, 4]. In the high- and low-temperature
limits, this model reduces to random walks and SAWs respectively. From the discussion above, we need the ratio of the
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Fig. 1. (a) Estimating the area of the unit circle using Monte Carlo integration. The values in the parentheses are the areas of
the shapes. 79 of 100 points were plotted inside the circle (pink dots) and the area of the circle can be estimated as
4� 79=100 ¼ 3:16. (b) A Venn diagram of SAWs and random walks. In order to calculate cN , we expand the configuration
space of SAWs to random walks, the number of which is exactly ð2dÞN .
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number of SAWs to that of random walks to estimate cN . If we denote the density of states of the modified Domb–
Joyce model as �ðVÞ, �ð0Þ=

PN�1
V¼0 �ðVÞ gives the desired ratio, and we can calculate cN by

cN ¼ ð2dÞN
�ð0ÞPN�1

V¼0 �ðVÞ
: ð2:3Þ

In order to calculate cN accurately, we should ensure the accuracy of not only �ð0Þ but �ðVÞ for the entire range of V .
It is difficult to do so, however, because the value of �ðVÞ varies across many orders of magnitude. To overcome these
difficulty, we use a powerful computational method of statistical mechanics.

2.3 Multicanonical simulation of the modified Domb–Joyce model

In the next step, we explain how to sample SAWs. We use the multicanonical Monte Carlo method [5, 6] to
accurately estimate the density of states of the modified Domb–Joyce model, �ðVÞ, over a wide range of V . This
calculation is essentially the same as that of the multi-self-overlap ensemble [7, 8] without Hamiltonian. A key to this
method is the weight function WðVÞ that is built up to be proportional roughly to 1=�ðVÞ by iterative methods.
Frequently-used iterative methods are as follows:

. the multicanonical method [5, 6]

. the entropic sampling method [9]

. the Wang–Landau method [10, 11].
We used the Wang–Landau method. We omit explaining these iterative methods here, and explain the multicanonical
method, assuming that WðVÞ has already been obtained. In the multicanonical method, the transition probability from
one path, !a (V ¼ Va), to another path !b (V ¼ Vb) is given by

pð!a! !bÞ ¼ min
WðVbÞ
WðVaÞ

; 1

� �
; ð2:4Þ

where this form of the transition probability is the same as that of the Metropolis method with WðVÞ instead of
the Boltzmann factor. An MCMC simulation using this transition probability generates an ensemble called a
multicanonical ensemble. Sampling from this ensemble gives a flat histogram HðVÞ (in the top left graph of Fig. 3).
Dividing HðVÞ by WðVÞ, we obtain �ðVÞ (in the bottom left graph of Fig. 3). From Eq. (2.3) with �ðVÞ obtained, we
can finally calculate cN (in the bottom right graph of Fig. 3).

3. Results

Using the proposed method above, we calculate cN with a statistical error up to N ¼ 256. Some of the calculated cN
values are shown in Table 1, together with the available exact values ðN � 71Þ and estimated values given by Prellberg
and Krawczyk using flatPERM [12]. The errors were estimated from the standard errors of histograms. The estimated
values agree well with exact values and estimated values of flatPERM. We should note that flatPERM achieved longer
walks up to c1028 ¼ 1:74� 10438, but due to the lack of error estimation, it is now known how many digits of the values
are reliable. The largest value of our estimation is

Fig. 2. A 12-step random walk with three intersections. There are one intersection on the purple circle and two intersections on the
orange circle. Total intersections V of the path is 3.
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c256 ¼ 5:6ð1Þ � 10108;

and we achieved the goal of a cN value of over 10100.
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