
Learning Algorithm for Boltzmann Machines
Using Max-Product Algorithm and Pseudo-Likelihood

Muneki YASUDA�, Junya TANNAI and Kazuyuki TANAKA

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

Received December 12, 2011; final version accepted October 30, 2012

Boltzmann machines are parametric probabilistic models for the statistical machine learning, forming Markov
random fields. Owing to their normalization constant, inference and learning in Boltzmann machines are generally
classified under NP-hard problems. Maximum pseudo-likelihood estimation is an effective approximate learning
method for Boltzmann machines. However, in principle, we cannot use this method for incomplete data sets,
except for some special cases. In this paper, we propose a new learning algorithm for Boltzmann machines with
incomplete data sets by generating a pseudo-complete data set from a given incomplete data using the max-product
algorithm and the Markov chain Monte Carlo method, and then, by applying maximum pseudo-likelihood
estimation to the pseudo-complete data set.

KEYWORDS: deep learning, Boltzmann machine, EM algorithm, max-product belief propagation,
pseudo-likelihood estimation

1. Introduction

Recently, statistical machine learning schemes based on the maximum likelihood framework have been widely
adapted in information sciences [1, 2]. The object of statistical machine learning is to find a generalization underlying
an observed real-world data set, that is, to find a suitable generative model of the observed data set.

Boltzmann machines are parametric probabilistic models for statistical machine learning [3]. They consist of visible
and hidden nodes (sometimes called latent nodes) with undirected symmetrical connections between nodes. In
Boltzmann machines, the states of all nodes are determined stochastically, and the probability distributions of the states
of all nodes can be regarded as a Markov random field (MRF) at their equilibrium state [4]. Owing to their high
flexibility and rich structure, Boltzmann machines can be potentially employed in various applications. Indeed, several
types of Boltzmann machines such as restricted Boltzmann machines (RBMs) [5] and deep belief networks (DBNs) [6]
have been successfully employed in various applications. Unfortunately, most Boltzmann machines are intractable and
often suffer from NP-hard problems. Hence, some approximate methods for learning and inference in Boltzmann
machines have been investigated by many researchers.

Maximum pseudo-likelihood estimation (MPLE) [7] is an approximate learning method for MRFs, and it is
employed for the learning of fully visible Boltzmann machines, which are Boltzmann machines with no hidden nodes
[8]. Using MPLE, one can obtain learning solutions within a polynomial computational cost. Furthermore, the solutions
are equivalent to or better than those of the contrastive divergence learning, which is one of the most familiar
techniques in Boltzmann machine learning [5]. However, in principle, MPLE cannot be directly applied to Boltzmann
machines with hidden nodes because the MPLE method requires a complete date set, except for some special cases
such as RBMs.

In this paper, by combining MPLE with the max-product algorithm (MPA) [1, 2] (also known as the max-sum
algorithm), we propose a new learning algorithm for Boltzmann machines with hidden nodes. The MPA is a belief
propagation algorithm that gives maximum a posteriori (MAP) configurations of MRFs having tree structures. We
create a pseudo-complete data set from a given incomplete data set by interpolating unobserved data using MPA and
the Markov chain Monte Carlo (MCMC) method in order to apply MPLE to Boltzmann machines with hidden nodes.
Although the proposed learning method requires sparseness among hidden nodes owing to the MPA, there are no other
structural limitations. We verify the validity of our learning method via our numerical simulations. The remainder of
this paper is organized as follows. In §2, we introduce a Boltzmann machine and an expectation-maximization (EM)
algorithm for it. In §3, we propose a new learning algorithm for the Boltzmann machine introduced in §2. In §4, we
describe numerical simulations of the proposed method, and we compare our method with the learning method
proposed by Welling and Hinton [9]. Finally in §5, we provide some concluding remarks.

� Corresponding author. E-mail: muneki@smapip.is.tohoku.ac.jp

Interdisciplinary Information Sciences Vol. 18, No. 1 (2012) 55–63
#Graduate School of Information Sciences, Tohoku University
ISSN 1340-9050 print/1347-6157 online
DOI 10.4036/iis.2012.55

http://dx.doi.org/10.4036/iis.2012.55

2. Boltzmann Machine

Let us consider an undirected graph Gð�;LÞ consisting of n nodes and some links; each node is labeled as i. Let
� ¼ f1; 2; . . . ; ng be the set of all nodes. A link between nodes i and j is labeled as ði; jÞ. Let L be the set of all links.
Because we consider undirected links, ði; jÞ and ð j; iÞ denote the same link. We assign a discrete random variable xi to
node i. We divide � into two different sets; one is the set of visible nodes, V , and the other is the set of hidden nodes,
H. Visible nodes are input-output nodes, and hidden nodes (sometimes called latent nodes) control the degree of
freedom of a system. We define the probabilistic model for the graph as

P�ðxV ; xH j �;wÞ :¼
1

Z�ð�;wÞ
expð�E�ðxV ; xH ; �;wÞÞ; ð2:1Þ

E�ðxV ; xH; �;wÞ :¼ �
X
i2�

�ixi �
X
ði; jÞ2L

wijxixj; ð2:2Þ

where Z�ð�;wÞ is the partition function

Z�ð�;wÞ :¼
X
x�

expð�E�ðxV ; xH; �;wÞÞ:

Here, we use the notation xA :¼ fxi j i 2 A � �g. The model parameters � and w play the roles of biases and couplings,
respectively. The probabilistic model in eq. (2.1) represents a Boltzmann machine [3, 4].

For learning in the Boltzmann machine, we determine the values of the model parameters by using a given set of
data. Note that the set of data is incomplete; we have no data for hidden nodes xH . We only have data for visible nodes
xV . Given a set of data, the Boltzmann machine is usually trained using maximum likelihood estimation (MLE). In
MLE, given M data values D :¼ fdð�Þi j i 2 V ; � ¼ 1; 2; . . . ;Mg, one maximizes the (log-) likelihood function

Lð�;wÞ :¼
X
xV

QDðxV Þ lnPV ðxV j �;wÞ ð2:3Þ

with respect to the model parameters, where

QDðxV Þ :¼
1

M

XM
�¼1

Y
i2V
�ðxi; dð�Þi Þ; �ðx; yÞ :¼

1 x ¼ y

0 x 6¼ y

�

is the empirical distribution of the given data set and

PV ðxV j �;wÞ :¼
X
xH

P�ðxV ; xH j �;wÞ

is the marginal distribution of the Boltzmann machine. Owing to the existence of hidden nodes, the maximization of the
likelihood function in eq. (2.3) can be archived by using the EM algorithm. In the EM algorithm, one obtains the
desired model parameters by the following procedure. In the E-step, one estimates the Q-function defined as

Qð�;w j ��;w�Þ :¼
X
x�

PHjV ðxH j xV ; ��;w�ÞQDðxV Þ lnP�ðxV ; xH j �;wÞ; ð2:4Þ

where

PHjV ðxH j xV ; �;wÞ :¼
P�ðxV ; xH j �;wÞ
PV ðxV j �;wÞ

:

In the M-step, one maximizes the Q-function with respect to � and w,

f�̂�; ŵwg ¼ arg max
f�;wg

Qð�;w j ��;w�Þ;

and subsequently, one sets f��;w�g f�̂�; ŵwg and returns to the E-step. This procedure is repeated until convergence.
However, because the computational cost of the M-step increases exponentially with n, except for some special cases,
one cannot execute the M-step for large n.

3. Maximum Pseudo-Likelihood Learning Using Pseudo-Complete Data Set

To prevent a computational complexity of OðenÞ in the EM algorithm, we extend MPLE and apply it to the EM
algorithm. MPLE is known as a tractable approximate learning algorithm for fully visible Boltzmann machines, having
a computational complexity of OðjLjÞ [8]. MPLE provides a unique solution that is equivalent to a solution obtained
using MLE in the case where there are no model error and no statistical error [7, 8]. However, MPLE requires a
complete data set. Hence, it cannot be directly applied to the EM algorithm because the given date set is incomplete.

56 YASUDA et al.

3.1 Approximate Q-function with pseudo-complete data set

In this section, we propose a new method to execute the EM algorithm introduced in the previous section by using
MPLE with a pseudo-complete data generated from the given incomplete data. The basic concept is as follows. For the
�th observed data dð�Þ :¼ fdð�Þi j i 2 Vg, and given ��, w�, we can sample xH from PHjV ðxH j dð�Þ; ��;w�Þ in eq. (2.4)
by using the MCMC method. Suppose that we get a set of K sampled points from PHjV ðxH j dð�Þ; ��;w�Þ, and we denote
kth sampled point by eðkj�Þð��;w�Þ :¼ feðkj�Þi ð��;w�Þ j i 2 Hg,

feðkj�Þð��;w�Þ j k ¼ 1; 2; . . . ;Kg �
K samples

PHjV ðxH j dð�Þ; ��;w�Þ:

Thus, for one observed data value, we have K sampled points for hidden nodes. If we interpreted the K sampled data
points as pseudo-observations for hidden nodes, from D and feðkj�Þð��;w�Þ j k ¼ 1; 2; . . . ;Kg, we can construct the
pseudo-complete data set, for instance, as C :¼ fcðlÞi j i 2 �; l ¼ 1; 2; . . . ;KMg, where

cðlÞi :¼
dðmÞi i 2 V
eðrjmÞi ð��;w�Þ i 2 H

(
;

where m ¼ bðK þ l� 1Þ=Kc and r ¼ l� ðm� 1ÞK, where bxc is the floor function which gives the largest integer less
than or equal to x, i.e., bxc ¼ maxfn 2 Z j n � xg. The pseudo-empirical distribution for the pseudo-complete data set
is constructed as

QCðx� j ��;w�Þ :¼
1

KM

XKM
l¼1

Y
i2�
�ðxi; cðlÞi Þ: ð3:1Þ

Using the pseudo-empirical distribution we approximate the Q-function as

Qð�;w j ��;w�Þ �
X
x�

QCðx� j ��;w�Þ lnP�ðxV ; xH j �;wÞ: ð3:2Þ

If K !1, the above approximation becomes an equality because

PHjV ðxH j xV ; ��;w�ÞQDðxV Þ ¼ lim
K!1

QCðx� j ��;w�Þ:

Since eq. (3.2) can be interpreted as the log-likelihood function with a complete data set, we can apply MPLE to the
Q-function as

Qð�;w j ��;w�Þ �
X
x�

QCðx� j ��;w�Þ ln
Y
i2�

Piðxi j x�i; �;wÞ ¼: QPLð�;w j ��;w�Þ; ð3:3Þ

where x�i :¼ fxj j j 2 � n figg and

Piðxi j x�i; �;wÞ :¼
P�ðxV ; xH j �;wÞP
xi
P�ðxV ; xH j �;wÞ

¼
expð�E�ðxV ; xH ; �;wÞÞP
xi

expð�E�ðxV ; xH ; �;wÞÞ
:

The maximization of QPLð�;w j ��;w�Þ is much easier than the maximization of the original Q-function because
QPLð�;w j ��;w�Þ is a concave function with respect to � and w, and its gradients are obtained with a computational
complexity of OðMKjLjÞ.

3.2 MCMC method with MPA

If sample points from the distribution PHjV ðxH j xV ; ��;w�Þ are efficiently obtained, we can construct a practical
learning algorithm using the framework presented in §3.1. However, the MCMC method requires a long relaxation
procedure before reaching an equilibrium state. The relaxation procedure can potentially become a serious problem
because we need to include it in each M-step. If we can start the MCMC method from an appropriate initial
configuration, such costly procedures can be avoided.

Let us regard a configuration of xH , which gives the highest probability of PHjV ðxH j xV ; ��;w�Þ for specific xV , as a
sample generated from the MCMC method reaching an equilibrium state, and let us treat this configuration as the initial
configuration of the MCMC method. However, in general, finding the configuration is an intractable problem that
requires an approximate method. The MPA is a message-passing-type algorithm that gives approximate configurations
providing maximum probabilities of Boltzmann machines [1, 2]. Next, we briefly explain the MPA. Let us consider a
Boltzmann machine defined on Gð�0;L0Þ, which takes the form

P�0
ðx�0
Þ /

Y
i2�0

�iðxiÞ

 ! Y
ði; jÞ2L0

 ijðxi; xjÞ

 !
; ð3:4Þ

where �iðxiÞ and ijðxi; xjÞ are potential functions for node i and link ði; jÞ, respectively. Note that the Boltzmann
machine expressed in eq. (2.1) as well as the distribution PHjV ðxH j xV ; ��;w�Þ can be represented in the same
functional form (see Appendix A). The MPA in the Boltzmann machine is the message-passing-type algorithm,

Learning Algorithm for Boltzmann Machines Using Max-Product Algorithm and Pseudo-Likelihood 57

Mj!iðxiÞ ¼ max
xj

1

Zj!i

 ijðxi; xjÞ�jðxjÞ
Y

k2@L0
ð jÞnfig

Mk!jðxjÞ

8<
:

9=
;; ð3:5Þ

where Zj!i is the normalized constant given by

Zj!i :¼
X
xi

 ijðxi; xjÞ�jðxjÞ
Y

k2@L0
ð jÞnfig

Mk!jðxjÞ:

The notation @L0
ðiÞ denotes the set of nodes that directly connect to node i through links in L0, @L0

ðiÞ :¼ fj j ði; jÞ 2 L0g.
Mj!iðxiÞ is the message from node j to node i. The messages are defined on all links. We can regard eq. (3.5) as a
simultaneous equation with respect to the messages. Using solutions to eq. (3.5), one computes

riðxiÞ / �iðxiÞ
Y

j2@L0
ðiÞ
Mj!iðxiÞ ð3:6Þ

for all i. Using these quantities, we can approximately obtain the configuration of x�0
which gives the highest

probability of P�0
ðx�0
Þ, x��0

:¼ arg maxx�0
P�0
ðx�0
Þ, as

x�i � arg max
xi

riðxiÞ: ð3:7Þ

As we can see, the desired configuration is separately determined for each node in the MPA. It is worth noting that if
Gð�0;L0Þ is a tree, the MPA is exact.

In our framework, we obtain sample points of xH , i.e., feðkj�Þð��;w�Þ j k ¼ 1; 2; . . . ;Kg, by the following procedure.
For specific dð�Þ, ��, and w�, we compute an initial configuration of xH , eð0j�Þð��;w�Þ, by using the MPA on the
distribution PHjV ðxH j dð�Þ; ��;w�Þ. We execute the MCMC method starting from the computed initial configuration,
and we get one sample for each of the � Monte Carlo steps, i.e.,

eð0j�Þð��;w�Þ �!
� steps

eð1j�Þð��;w�Þ �!
� steps

� � � �!
� steps

eðKj�Þð��;w�Þ; ð3:8Þ

where we let one Monte Carlo step update all the nodes once by using the Gibbs sampler. The above procedure is
carried out for all � ¼ 1; 2; . . . ;M.

In the following, we summarize the procedure of the proposed learning method.
PROPOSED LEARNING ALGORITHM ———————————————————————————————
Step 1. Given an incomplete data set D ¼ fdð�Þ j � ¼ 1; 2; . . . ;Mg, initialize �� and w�.
Step 2. For � ¼ 1; 2; . . . ;M, using the MPA in eqs. (3.5)–(3.7) for PHjV ðxH j dð�Þ; ��;w�Þ, generate the initial

configuration of xH , i.e., eð0j�Þð��;w�Þ.
Step 3. Using the Gibbs sampler starting from the given initial configuration, generate pseudo-observations for the

hidden nodes feðkj�Þð��;w�Þ j k ¼ 1; 2; . . . ;K; � ¼ 1; 2; . . . ;Mg from eq. (3.8).
Step 4. Combining data set D with the given pseudo-observations for hidden nodes, construct pseudo-complete data

set C and construct the pseudo-empirical distribution in eq. (3.1).
Step 5. Maximizey the approximate Q-function in eq. (3.3) with respect to � and w:

f�̂�; ŵwg arg max
f�;wg

QPLð�;w j ��;w�Þ:

Step 6. Update �� and w� by

f��;w�g f�̂�; ŵwg

and return to Step 2.
The above procedure is repeated until convergence.

The total computational complexity of this algorithm is OðMKjLjÞ.
The concept of the proposed learning algorithm is quite similar to that of the contrastive divergence learning [5, 10]

at the point where non-observed data corresponding to hidden nodes are generated by a sampling method. Our method
allows (sparse) links between hidden nodes. In contrast, the ordinary contrastive divergence learning never allow links
between hidden nodes. This is the major difference between our method and the ordinary contrastive divergence
learning.

4. Experiments

We consider the Boltzmann machine shown in Fig. 1. This Boltzmann machine is an extension of RBMs. Indeed, if
one eliminates all the links between nodes in the same layer, this system reduces to an RBM. Although one can apply

y To reach convergence, instead of full maximization, it is sufficient to execute a few steps uphill on the pseudo-Q function by a gradient ascent

method. In fact, we stop the maximization by 20 steps, with step size being 0.01 in our numerical experiments described in §4.

58 YASUDA et al.

MPLE to RBMs [11], one cannot directly apply it to this extended system, which has links among hidden nodes,
without artifices like those in our method. Let all variables be binary variables, which take values of +1 or �1. We let
this system be the generative model in our numerical experiments and we generate M data points from this Boltzmann
machine. In the generative Boltzmann machine, biases � and couplings w are independently drawn from U½�h; h	 and
U½�J; J	, respectively, where U½a; b	 is a uniform distribution with interval ½a; b	.

4.1 A quality of proposed sampling method

In this section, we show a quality of our sampling method using the MPA. In the generative Boltzmann machine
defined in the previous section, we set jVj ¼ 17, jHj ¼ 3, h ¼ 0:1, and J ¼ 0:3, and then, we generate M data from the
generative Boltzmann machine. Although the generated data set includes data points corresponding to hidden nodes,
we only see data points corresponding to visible nodes.

Given � and w, to see how much the pseudo-complete data set, C, created by our sampling method can reconstruct a
statistical property of hidden nodes, we compare mean values of xH evaluated by using the pseudo-empirical
distribution with those exactly evaluated using the generative model. Figure 2 shows the mean square errors (MSEs),

jHj�1
X
i2H
ðhxiiQC

� hxiiexactÞ2;

for M ¼ 100 and M ¼ 1000, against K which is the number of sample points of hidden nodes, where the notation
h� � �iQC

denotes the sample average calculated by using the pseudo-empirical distribution, QCðx� j �;wÞ, and the
notation h� � �iexact denotes the exact average calculated by the generative Boltzmann machine. Note that we know the
values of all true parameters in the generative Boltzmann machine in this experiment. There are almost no variations
in the MSEs for K. This means that a small K can reconstruct a statistical property of hidden nodes almost as well
as a relatively large K. In contrast, the MSEs strongly depend on M. For instance, compare the case of M ¼ 100

and K ¼ 20 with that of M ¼ 1000 and K ¼ 2. In the two cases, the total numbers of pseudo-complete data points are
the same.

Hidden Layer (chain)

Visible Layer
(fully connected)

Fig. 1. Boltzmann machine consisting of two different layers, visible and hidden. The closed nodes and the open nodes represent
visible nodes and hidden nodes, respectively. Visible nodes are fully connected in the visible layer, and hidden nodes form a
chain. Each hidden node connects with all visible nodes.

K
0 10 20

M
SE

10

10

10

10

10

M = 100
M = 1000

Fig. 2. MSEs of reconstruction by using our sampling method.

Learning Algorithm for Boltzmann Machines Using Max-Product Algorithm and Pseudo-Likelihood 59

The pseudo-complete data set was introduced to evaluate a quantity

f yð�;wÞ :¼
X
xV ;xH

f ðxV ; xHÞPHjV ðxH j xV ; �;wÞPV ðxV j �;wÞ:

for a function f ðxV ; xHÞ. Note that in the numerical experiment in this section, f ðxV ; xHÞ ¼ xi; i 2 H. Given a data point
dð�Þ, an aim of our sampling method in §3 is to approximate

�ff ðdð�Þ; �;wÞ :¼
X
xH

f ðdð�Þ; xHÞPHjV ðxH j dð�Þ; �;wÞ

by the Monte Carlo integration:

�ff ðdð�Þ; �;wÞ �
1

K

XK
k¼1

f ðdð�Þ; eðkj�Þð�;wÞÞ ¼: �ff ISðdð�Þ; �;wÞ;

where eðkj�Þð�;wÞ is the sampled point from PHjV ðxH j dð�Þ; �;wÞ, which is introduced in §3.1. Because the solution to
the MPA (approximately) gives the configuration of xH making PHjV ðxH j dð�Þ; �;wÞ the highest, the sampled points
eðkj�Þð�;wÞ lie around the most important point. This is similar to the importance sampling method. It is thought that this
is a reason why a small K gives a similar performance to a relatively large K. Therefore, for a given specific data point,
a small K seem to be sufficient.

By the pseudo-complete data set f yð�;wÞ is approximated by

f yð�;wÞ ¼
X
xV

�ff ðxV ; �;wÞPV ðxV j �;wÞ

�
X
xV

�ff ISðxV ; �;wÞQDðxV Þ ¼
1

M

XM
�¼1

�ff ISðdð�Þ; �;wÞ:

Therefore, even if �ff ISðdð�Þ; �;wÞ is a good approximation of �ff ðdð�Þ; �;wÞ, a poor QDðxV Þ degrades a total performance.
The quality of QDðxV Þ only depends on M, and each data point for xV would be generated by a fair sampling. Here, the
‘‘fair sampling’’ means an unbiased sampling differing from the importance sampling. Thus, a small M should be a
strong bottleneck of quality of approximation, and therefore, the quality of the pseudo-complete data set is more
sensitive for the value of M than that of K.

4.2 Simulation of learning using artificial data

In this section, we show performances of the proposed learning algorithm. We generate M ¼ 100 data points from
the generative Boltzmann machine defined above, and subsequently, we perform learning with the Boltzmann machine
having the same structure as the generative Boltzmann machine. Note that in the learning phase, we only refer to data
points corresponding to visible nodes.

We set jVj ¼ 17 and jHj ¼ 3. Because the system is not very large, we can precisely evaluate the log-likelihood in
eq. (2.3). The left plot in Fig. 3 shows the trajectory of the log-likelihood (per node),

jV j�1Lð�;wÞ; ð4:1Þ

evaluated with the parameters obtained by our method, where we set h ¼ 0:1, J ¼ 0:3, K ¼ 3, and � ¼ 2. The
horizontal axis represents the update step t of our algorithm. The right plot in Fig. 3 shows the mean absolute error of
parameters between at step t and at step t � 1:

step
0 20 40 60 80 100

step
0 50 100 150 200

M
A

E

0.0

0.01

0.02

–0.6

–0.55

–0.5

Fig. 3. (Left) Trajectory of the log-likelihood against the update step t. (Right) Trajectory of the mean absolute error of parameters
between at step t and at step t � 1 shown in eq. (4.2) against the update step t.

60 YASUDA et al.

MAE :¼
1

j�j þ jLj

X
i2�
j�ðtÞi � �

ðt�1Þ
i j þ

X
ði; jÞ2L
jwðtÞij � wðt�1Þ

ij j

 !
: ð4:2Þ

We can see that, on average, our algorithm converges by about 100 steps. Figure 4 shows the dependencies of the log-
likelihood given by our method on K, which is the number of sample points of hidden nodes, and on � , which is the
number of MCMC steps between two sequential sample points, as in eq. (3.8). The points in these plots represent the
values of the log-likelihood at the convergence points. These results indicate that the quality of our method is nearly the
same for different values of K and � . Thus, fortunately, small values of K and � are sufficient. In particular, the result
for K (the left plot of Fig. 4) is consistent with the argument given in §4.1. Although a larger K tends not to change
results from the perspective of the likelihood, it can increase the stability of convergence of the algorithm as shown in
Fig. 5.

Again, we set jVj ¼ 17, jHj ¼ 3, and h ¼ 0:1. Figure 6 shows the plot of the log-likelihood against J, which controls
the correlations among nodes in the generative Boltzmann machine. The open circles represent the results obtained by
our method, where K ¼ 3 and � ¼ 2. The closed squares represent the results obtained by the mean-field learning
algorithm proposed by Welling and Hinton [9]. In this experiment, we stop updating by 500 times when the algorithms
do not converge. Our method gives higher values of the log-likelihood than the method of Welling and Hinton. Their
method significantly degrades at large J because it is based on a mean-field method, which often fails in highly
correlated systems.

We show the dependency of the computational time of our learning algorithm on the number of hidden nodes, jHj.
Figure 7 shows the average of computational timez of our learning against the number of hidden nodes, where we set
jV j ¼ 17, K ¼ 3, � ¼ 2, h ¼ 0:1, and J ¼ 0:3. The vertical axis represents the average of computational time which is
required 500 update steps. The computational complexity of our method is OðKMjLjÞ and jLj ¼ jVjðjV j � 1Þ=2þ
jV jjHj þ jHj � 1 / jHj in the structure used in this section. Thus, the computational complexity of our method is

K
0 5 10 15 20 0 10 20 30

Fig. 4. Dependencies of the log-likelihood on K and � . On the left, we set � ¼ 2, and on the right, we set K ¼ 4.

step
0 50 100 150 200

M
A

E

0.0

0.01

0.02
K = 3
K = 9

Fig. 5. MAEs in eq. (4.2) for K ¼ 3 and 9 against update step t.

z We use a 32 bit computer with 2.40 GHz CPU.

Learning Algorithm for Boltzmann Machines Using Max-Product Algorithm and Pseudo-Likelihood 61

proportional to jHj. From Fig. 7, one can see that the computational time linearly grows with the increase in jHj as we
expect.

5. Conclusion

In this paper, we proposed a new learning algorithm for Boltzmann machines with hidden nodes using the MPA and
MPLE, and we showed that our method is superior to the mean-field algorithm proposed Welling and Hinton [9]. Our
framework allowed us to employ better likelihoods, e.g., composite likelihood [12], instead of pseudo-likelihood.

In the case of fully visible Boltzmann machines, the convergence of MPLE is theoretically guaranteed because the
pseudo-likelihood function is a concave function. However, the convergence property of the proposed method remains
unclear because of the existence of hidden nodes and probabilistic algorithms such as the MCMC method. The
convergence property requires further investigation, which should be addressed in the future.

Acknowledgments

This work was partly supported by Grants-In-Aid (Nos. 21700247, 22300078, 24650115, and 24700220) for
Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Appendix: Max-Product Algorithm in PHjVðxH j xV; �;wÞ

Given xV , �, and w, PHjV ðxH j xV ; �;wÞ takes the form

PHjV ðxH j xV ; �;wÞ / exp
X
i2H

hixi þ
X
ði; jÞ2LH

wijxixj

 !
¼

Y
i2H

ehixi

 ! Y
ði; jÞ2LH

ewijxixj

 !
; ðA:1Þ

where LH :¼ fði; jÞ j ði; jÞ 2 L; i 2 H; j 2 Hg and

J
0.0 0.1 0.2 0.3 0.4 0.5

our method
mean–field

Fig. 6. Plot of the log-likelihood against J in the generative Boltzmann machine.

of hidden node
0 10 20 30

tim
e

[s
ec

]

20

40

60

80

100

Fig. 7. The dependency of the computational time of our learning algorithm on jHj.

62 YASUDA et al.

hi :¼ �i þ
X

j2@LðiÞ\V
wijxj:

Therefore, we can regard PHjV ðxH j xV ; �;wÞ as the Boltzmann machine on graph GðH;LHÞ. By replacing H and LH by
�0 and L0, respectively, and by setting �iðxiÞ ¼ ehixi and ijðxi; xjÞ ¼ ewijxixj , one identifies the distribution (A·1) using
the Boltzmann machine (3.4). Hence, we can easily apply the MPA described in §3.2 to PHjV ðxH j xV ; �;wÞ.

REFERENCES

[1] Bishop, C. M., Pattern Recognition and Machine Learning, Springer (2006).
[2] Wainwright, M. J., and Jordan, M. I., ‘‘Graphical models, exponential families, and variational inference,’’ Foundations and

Trends in Machine Learning, 1: 1–305 (2008).
[3] Ackley, D. H., Hinton, G. E., and Sejnowski, T. J., ‘‘A learning algorithm for Boltzmann machines,’’ Cognitive Science, 9:

147–169 (1985).
[4] MacKay, D. J., Information Theory, Inference, and Learning Algorithm, Cambridge University Press (2003).
[5] Hinton, G. E., ‘‘Training products of experts by minimizing contrastive divergence,’’ Neural Computation, 14: 1771–1800

(2002).
[6] Hinton, G. E., Osindero, S., and Teh, Y. W., ‘‘A fast learning algorithm for deep belief nets,’’ Neural Computation, 18: 1527–

1554 (2006).
[7] Besag, J., ‘‘Statistical analysis of non-lattice data,’’ The Statistican, 24: 179–195 (1975).
[8] Hyvärinen, A., ‘‘Consistency of pseudo likelihood estimation of fully visible Boltzmann machines,’’ Neural Computation, 18:

2283–2292 (2006).
[9] Welling, M., and Hinton, G. E., ‘‘A new learning algorithm for mean field Boltzmann machines,’’ Proceeding of the

International Conference on Artificial Neural Networks (ICANN), 2415: 351–357 (2002).
[10] Carreira-Perpiñán, M. A., and Hinton, G. E., ‘‘On contrastive divergence learning,’’ Proceeding of 10th International

Workshop on Artificial Intelligence and Statistics (AISTATS2005), 59–66 (2005).
[11] Marlin, B., Swersky, K., Chen, B., and de Freitas, N., ‘‘Inductive principles for restricted Boltzmann machine learning,’’

Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS), 9: 509–516 (2010).
[12] Lindsay, B. G., ‘‘Composite likelihood methods,’’ Contemporary Mathematics, 80: 221–239 (1988).

Learning Algorithm for Boltzmann Machines Using Max-Product Algorithm and Pseudo-Likelihood 63

