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We show that the super Catalan numbers are special values of the Krawtchouk polynomials by deriving an
expression for the super Catalan numbers in terms of a signed set.
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The super Catalan numbers,

Sðm; nÞ :¼
ð2mÞ!ð2nÞ!

m!n!ðmþ nÞ!
;

as designated by Gessel in [9, Eq. (28)] form, hierarchically speaking, special cases of super ballot numbers (cf.
[9, pp. 180, 189]). Historically, Gessel points out that these numbers had been observed as early as 1874 and studied by
E. Catalan [6]; Aguiar and Hsiao in [1] provide a more detailed account of earlier appearences (cf. [5], [8], [7], and
Riordan [14, Chapter 3, Exercise 9, p. 120]). Surprisingly, the innocent looking numbers, Sðm; nÞ, seem to have been
immune against a combinatorial interpretation for all values of ðm; nÞ over the last century despite limited success
stories for particular values (see problem 66(a) in Stanley’s bijective open problems compendium [16]). The following
references highlight the success cases. In [9], Gessel notes that for Sð1; nÞ=2 we obtain the Catalan number Cn; whereas
for the case when m ¼ 0, we yield middle binomial coefficients, 2n

n

� �
. In [10], Gessel and Xin provide a combinatorial

interpretation in terms of Dyck paths when m ¼ 2 or 3. An alternative combinatorial interpretation for the case m ¼ 2

was provided by Schaeffer in [15] using a method that was introduced in the interpretation to formulas of Tutte for
planar maps. A more topologically flavored yet still combinatorial interpretation for the m ¼ 2 case is also available by
Pippenger and Schleich in [13]; they count cubic trees on n interior vertices (or the number of hexagonal trees with n

nodes). In 2005, Callan in [4] provided an elegant combinatorial interpretation of the recurrence Sðm; nÞ=2 ¼P
k�0 2

n�m�2k n�m
2k

� �
Sðm; kÞ=2 for the case when m ¼ 2 showing that it enumerates the aligned cubic trees by number of

vertices that are neither a leaf nor adjacent to a leaf.
In this note we establish the following expression for super Catalan numbers:

Sðm; nÞ ¼ ð�1Þm
X

P2Pmþn

ð�1Þh2mðPÞ; ð1Þ

where the sum is over the set Pmþn of all lattice paths from ð0; 0Þ to ðmþ n;mþ nÞ consisting of unit steps to the right
and up, and h2mðPÞ denotes the height of P ¼ ðP0;P1; . . . ;P2ðmþnÞÞ 2 Pmþn after the 2m

th step, i.e., the y-coordinate of
P2m. Although this is an interpretation of Sðm; nÞ in terms of a signed set only, the right-hand side of (1) is a special
value of the Krawtchouk polynomial defined as follows:

Kd
j ðxÞ ¼

Xj

h¼0

ð�1Þh
x

h

� �
d � x

j� h

� �
:

Then (1) is equivalent to

K2ðmþnÞ
mþn ð2mÞ ¼ ð�1ÞmSðm; nÞ: ð2Þ

To see the equivalence, observe that each P 2 Pmþn has exactly mþ n up-steps and that the number of P 2 Pmþn with
h2mðPÞ ¼ h is therefore equal to 2m

h

� �
2n

mþn�h

� �
.

Krawtchouk polynomials Kd
j ðxÞ appear as the coefficients of the so-called MacWilliams identities (cf. [12, Chap. 5,

§2]), and also as the eigenvalues of the distance-j graph of the d-cube (cf. [3, Chap. 3, §2]). The identity shows that
fð�1ÞmSðm; nÞ j m; n � 0; mþ n ¼ Ng coincides with the set of non-zero eigenvalues of the distance-N graph of
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the 2N-cube, which is known as the orthogonality graph and has been studied in connection with pseudo-telepathy in
quantum information theory (cf. [11]). Finally, (2) follows immediately from the identity of von Szily (cf.
[9, Eq. (29)]):

Sðm; nÞ ¼
X
k2Z

ð�1Þk
2m

mþ k

� �
2n

n� k

� �

¼ ð�1Þm
Xmþn

h¼0

ð�1Þh
2m

h

� �
2n

mþ n� h

� �

¼ ð�1ÞmK2ðmþnÞ
mþn ð2mÞ:

We note that (2), as well as the identity of von Szily, is just a restatement of (a special case of) Kummer’s evaluation of
well-poised 2F1ð�1Þ series.

To obtain a proper interpretation as the size of a set of certain paths, we need to find an injection from the set

fP 2 Pmþn j h2mðPÞ 6� m (mod 2Þg

to

fP 2 Pmþn j h2mðPÞ � m (mod 2Þg;

and a description of the complement of the image. This is known for the case m ¼ 1 (see [2, Section 5.3]), but it seems
to be a difficult problem in general.
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