
Design and Implementation of a Reusable Knowledge Model
for Supporting the Network Management Functions

Sameera ABAR1;� and Tetsuo KINOSHITA2;�

1Graduate School of Information Sciences, Tohoku University, Sendai, Japan
2Research Institute of Electrical Communication, Tohoku University, Sendai, Japan

Received December 9, 2008; final version accepted January 5, 2011

The focus of our work is the elicitation of communication network systems’ knowledge resources in a generic
and reusable manner for providing the automated support to network management tasks. Key features of the
proposed knowledge model are: ontological representation of static domain-content and management-expertise
encoded as the core knowledge of distributed multi-agent architecture. Our emphasis has primarily been on the
modularization of resource knowledge to facilitate its reuse in a flexible manner. To demonstrate the effectiveness
of proposed scheme, we have implemented an experimental network in our laboratory, and the devised knowledge
model has been deployed through multi-agent based middleware layer in the prototype system. A couple of
application scenarios have been designed for testing with the prototype system. Experimental results confirm a
marked reduction in the workloads of the network operator with our system providing the automated support to
network management functions. Validation of the reusability/modifiability aspects of our system illustrates the
flexible manipulation of knowledge fragments within diverse application contexts. We envisage our knowledge
modeling approach as the first step towards the comprehensive knowledge acquisition, representation, and
dissemination in the communication network management domain.

KEYWORDS: Knowledge acquisition/representation/reuse, domain ontology, multi-agent middleware,
distributed problem-solving, network management

1. Research Overview

With the unprecedented growth in size and complexity of heterogeneous and globally distributed communication
networks, the development of intelligent and adaptive tools is the indispensable requirement for automated network
management functions. Typically, the network management functions translate into fault detection and diagnosis tasks
as well as performance measurements across applications, servers and network devices. Managing huge distributed
networks in order to ensure that the system operates within desirable parameters is an extremely cumbersome task and
poses many challenges for the network administrators. Even though failures in large communication networks are
unavoidable, quick detection and identification of the causes of failure can fortify these systems, making them robust
with more reliable operations, thereby ultimately increasing the level of confidence in the services they provide. Hence,
for the significant administrative overhead reduction and increased robustness, the errors and failures must be worked
around in an autonomous fashion for restoring and optimizing the normal state of the network. There is a demand for
networks whose components are smarter than they are now to allow for learning about evolving traffic patterns, error
conditions, and emerging attacks. Ultimately, such networks should be able to ward-off attacks by reasoning using deep
knowledge about networking, communications, and prior forms of attack. Therefore, detailed description of the
network management domain resources and underlying task specific knowledge is an essential mainstream to be taken
into account. The domain knowledge resources consist of objects which represent the application domain data, and the
definitions of behavior that are essential for its manipulation. The challenge of knowledge acquisition is to obtain and
understand the domain knowledge resources that are required to solve the tasks in the given environment.

The scope of our work has been confined to SNMP-managed (Simple Network Management Protocol) TCP/IP-based
(Internet Protocol Suite: Transmission Control Protocol and Internet Protocol) globally distributed communication
network systems. This domain is inherently very complex (it is a heterogeneous and incompatible multi-vendor
environment) as well as knowledge-intensive (diverse range of knowledge and data are present). Typically, the tasks of
an NMS (network management system) deal with collecting and analyzing information about the network system,
including both hardware resources (e.g. configuration of a router) and software (e.g. number of incoming IP-packets to
a router). Deeper understanding of the network state can be acquired from the wide range of network information,
which must be analyzed and interpreted by the network experts and management applications. The pre-requisite for the

� Corresponding author. E-mail: sameera@ka.riec.tohoku.ac.jp, kino@riec.tohoku.ac.jp

Interdisciplinary Information Sciences Vol. 17, No. 1 (2011) 19–37
#Graduate School of Information Sciences, Tohoku University
ISSN 1340-9050 print/1347-6157 online
DOI 10.4036/iis.2011.19

http://dx.doi.org/10.4036/iis.2011.19

automation of management functions is the detailed interpretation of network-related information and knowledge
resources.

Traditionally, knowledge engineering was viewed as a process of ‘‘extracting’’ knowledge from a human expert and
transferring it to the machine in computational form. Today, knowledge engineering is approached as a sophisticated
modeling activity, and inference or reasoning algorithms are used to solve problems with the help of this knowledge.
The applications are characterized by the tasks and domains involved. Knowledge modeling can, therefore, be divided
into two conceptual sub-activities: (a) modeling the domain knowledge and (b) modeling the task knowledge (Abu-
Hanna and Jansweijer, 1994). The ‘‘Heuristic Classification’’ (Clancey, 1985) method relies on the experiential
knowledge of systems and their behaviors. In contrast with other descriptions of expert systems, this method specifies
the knowledge needed to solve a problem (through the useful combinations of problem solving tasks and associated
sub-tasks for the purpose of sharing and reuse) independent of its representation in a particular computer language.
Chandrasekaran, (1992) spotlighted the knowledge modeling approach in terms of the notion of a ‘‘task structure’’
which recursively links a task to alternative methods and to their sub-tasks. In the proposed work, the characterization
of the network knowledge model has been performed in-line with the CommonKADS (Schreiber et al., 1994)—a
methodology for expertise modeling embraces the application-intensive knowledge in three types as: domain,
inference, and task hierarchy.

Recently, Multi-Agent System (MAS) has emerged as a flexible way to manage the resources of distributed systems.
In this paper, MAS-based approach has been adopted to deploy the functionality of the intelligent or autonomous
behavior of proposed network knowledge model, to aid in the reduction of network management workload. Multi-agent
systems are composed of multiple interacting agents where each agent is a coarse-grained computational system in its
own right, as well as independently modifiable (Hamdi, 2006). Agents, while being well-focused on their automated
tasks, provide inherently distributed solutions. While the multi-agent research area is very active and it offers an
appropriate tool to tackle the network-related problems, its concerns towards this domain are not yet well covered. The
scant evidence of real-world deployment of agent-based systems is clearly being considered due to the same knowledge
engineering bottleneck that has been the choke-point for the widespread application of expert and intelligent systems.
At present, machines and software can store the information, rank it, display it, but cannot comprehend or process it.
Trying to overcome this issue led to the basic notion that if we could be able to make this information inter-linked for
sharing among the agents. Therefore, it is required to make a more schematic organization of information—an
organization that is more suitable for machines to operate on for the provision of various automated services. The next-
generation multi-agent based Knowledge Management (KM) systems will likely rely on conceptual models in the form
of ontologies— the shared conceptualizations of a domain of interests, and these structure the knowledge resources in a
highly expressive manner for the purpose of efficient reuse. KM facilitates the capture, deployment, access, and reuse
of information typically using contemporary technology (O’Leary, 2001).

Ontologies: the keystone of new generation of multi-agent based systems pave the way to move from a document-
oriented view of the KM to a content-oriented view, where knowledge items are structured, interlinked, combined and
used, thereby facilitating agent interactions and communication with the sources. Ontologies have become ubiquitous
in information systems (Noy and Musen, 2004). Recently, we have seen an explosion of interest in ontologies
as artifacts to represent human knowledge as critical components in knowledge management, the Semantic Web,
e-commerce applications, bioinformatics and several other application areas (Brewster and O’Hara, 2004). The
proposed approach utilizes a concise and consistent ontology representing the static content of the communication
network system domain, capable of fitting as more as possible the technical descriptions of objects (network-related
terminologies). The proposed domain ontology design in the network management domain presents a hierarchical
structure, which glues together classes representing network entities and association between them. Our key concept
is to specialize the agent interactions with the network systems’ knowledge resources, for autonomously and
flexibly managing the network devices and resources, thereby reducing the workloads of a network administrator
remarkably.

1.1 Motivation

Motivation for this research originated from the need to devise a MAS-mediated and ontology-driven knowledge-
based strategy in support of the automatic provision of just-in-time and just-enough, context-dependent knowledge for
actively managing the data communication network systems (Abar et al., 2005). So far, a little work has been done for
managing the operational knowledge of the communication network systems. Hence, the proposed idea can be regarded
as an initial step towards the acquisition, representation, utilization, and sharing of widely distributed network
knowledge resources.

Another reason for devising our network knowledge representation scheme stems from the fact that not many
knowledge modeling techniques have been developed for the diagnostic technical domains. The main draw-back of
knowledge-based systems is a need for knowledge acquisition—a well-known bottleneck for many artificial
intelligence applications. Building new knowledge-based systems today usually entails constructing fresh knowledge
bases from scratch. It could instead be done by assembling reusable components (Neches et al., 1991). Therefore, this
work can serve as a test-bed to be reused for various practical diagnostic domains. The proposed approach embodies the

20 ABAR and KINOSHITA

network-related knowledge in the form of uniformly represented semantic models, thereby providing a promising
mechanism to achieve reusability and maintainability.

1.2 Relevant Literatures

Several efforts have been reported in literature as far as the automation of network management functions is
concerned. However, these comparable studies focus primarily on the expert systems, or refitting the agent paradigm to
management solutions. Further, these works seriously overlook many important issues regarding an ample exposition
of diverse range of network knowledge resources, which is highly desirable for the efficient multi-agent interactions. A
lot of prior work has been done on the data structure of managed objects, and the management of the network systems
is formally done through the conventional SNMP-based polling mechanism. However, so far a concrete effort for
managing the knowledge resources of communication network systems has not been presented in the contemporary
research works. Since the scope of our research is confined towards exploiting the knowledge resources within the
network management domain, therefore, we will mention the ones that we assess as the most relevant to our network
knowledge representation scheme.

In this regard, (Li and Leon, 1998) discusses that the network-related knowledge can be formalized in a similar way
as the SMI-based (Structure of Management Information) general definitions for MIBs (Management Information
Base) in an ASN.1 (Abstract Syntax Notation) format, for sharing among agents in the distributed networking
environment. However, the practical adoption of this approach clearly marks its limitations in comparison to the
proposed scheme. KACTUS project (Bernaras et al., 1998) investigates the feasibility of ontological knowledge reuse
in the context of complex technical diagnostic systems. In addition to this, (Konno et al., 2004) presents the Active
Information Resource based network management system, however, it does not take into account the knowledge
representation issues in an in-depth manner. Lemos et al., (1999) led to a generic knowledge acquisition mechanism
based on the concept of domain and MIB-variable based causal models, for the communication network management
support systems. However this work lacks many important issues about the detailed analysis of the networks’
knowledge resources as well as mapping and realization of the knowledge models. We aspire to further extend this
concept towards constructing a fully functional system, to provide automated management support in an efficient
manner, by elaborating the underlying knowledge resources of network systems. The proposed idea can be regarded as
a foremost step towards the acquisition, representation, and sharing of widely distributed network knowledge, for
providing the automated management support to communication network systems.

1.3 Paper Organization

The paper is structured as follows. Section-2 presents our formalization of the communication network-related
knowledge model. The implementation considerations of multi-agent middleware system and realization of proposed
knowledge model with the multi-agent approach have been illustrated in Section-3. Experimental network system
and the application scenarios for performing real-time tests have been described in Section-4. Evaluation of the
modifiability/reusability aspects of the proposed systems’ design has been presented in Section-5. Finally, the
concluding remarks follow in Section-6.

2. Proposed Knowledge Model

Our knowledge modeling approach categorizes the ‘‘network systems’ data’’ as static domain content and dynamic
status information; and the ‘‘experiential management knowledge’’ as task hierarchy with corresponding inference
support mechanism, as illustrated in Fig. 1. The proposed knowledge modeling strategy has been constructed in-line with
CommonKADS (Schreiber et al., 1994) (which is a comprehensive methodology for structuring the application intensive
knowledge for the reuse-based expert systems) to facilitate its reusability, shareability, and maintainability. The proposed
modeling approach for knowledge acquisition, representation, and sharing results in a set of concise and logically
consistent knowledge components and specifications, such as domain ontology, fault-state causal reasoning models and
the associated generic task-structures for handling the diagnostic sessions. Figure 2 is the pictorial representation of the
proposed knowledge-based strategy for the automated support to communication network management functions.
Table 1 presents our proposed framework of the communication networks’ knowledge resources.

� Domain Factual Knowledge

Static domain-specific content and its semantics are specified in a declarative form in the proposed system. It consists
of network systems’ actual configurations and infrastructure; for instance, nomenclature of the network objects, IP-
Addresses, Internet Domain Names, routing information, port numbers, application settings etc. The main classes or
general concepts contain information about various components or nodes of the network system under consideration. In
the experimental network system, the domain-specific concepts and their relationships are hierarchically organized as
domain knowledge ontology. Ontologies are commonly used to capture static knowledge about some domain of
interest. These domain structures enable the empirical management content to navigate through them during the course
of diagnostic reasoning process.

Design and Implementation of a Reusable Knowledge Model for Supporting the Network Management Functions 21

Figure 3 demonstrates our construction of the network systems’ domain ontology (DO) using Protégé-3.4 [17], a tool
which provides an intuitive graphical user interface for ontology editing and development, a rich knowledge acquisition
and modeling features, and an extensible API architecture. The Domain Ontology (DO) in the proposed system is a

NMD

DynamicStatic
MIB Variant:
Statistical data or
numerical facts
about operational
status of network
devices, error
reports, server-
logs etc.

NMK

Task
Inference

Heuristic reasoning strategy defines how
domain content and structure can be
utilized during the diagnostic sessions

Rules:
Logical relations among multiple objects

Correlatios:
Grouping of multiple variables

Actions:
Formal definitions of system behavior −
a pair of pre-condition and post-condition

(1) Actual configuration
of network elements

(2) MIB Static: Data
structure of managed
objects in MIB-II

Descriptions of
activities to be
performed
hierarchically, to
achieve the desired
goal

Fig. 1. Network Management Data (NMD) versus Network Management Knowledge (NMK).

Fig. 2. Pictorial representation of the proposed knowledge-based strategy for the automated support to network management
functions.

22 ABAR and KINOSHITA

Protégé-generated OWL-1.0 script (OWL: Web-Ontology-Language is a W3C Standard), and it is parsed and rendered
through the OWLAPI-2.1.1 (API: Application Programming Interface) based parser. OWLAPI is a Java-interface, and
it subscribes to the axiom-centric view i.e., a set of axioms refer to the entities of an ontology. While designing the
network domain ontology for our experimental system, a particular care has been taken to ensure its reusability,
maintainability, and modifiability in a flexible manner. The hierarchy of concepts within our experimental network

Table 1. Proposed framework of the communication networks’ knowledge resources.

Network
Management
Information

Network Management Data

Network Management KnowledgeStatic Domain Data Dynamic Status Data

Description

Incorporation

Configurational Specifications
An organized set of domain
specific concepts/facts and
relationships among them

Domain Knowledge Ontology
Nomenclature of network

resources, IP-addresses, Port
numbers, Routing information,

Internet Domain Names,
Application settings & versions

[Protégé-3.4]
[Parser: OWLAPI-2.1.1]

Statistical Data or
Numerical Facts

Operational status of
network devices, error
reports, server-logs …

Network administrator
analyzes this raw
data to locate the
root cause of the
network failures

Dynamically
Generated Run-time

Network Data
Collected through

RMON (I&II)-MIB or
SNMPv2-MIB

[Syslog Functions]

Multi-agent Middleware System
Production-rule type knowledge of the DASH-agent

describes the behavioral characteristics of faults
[DASH-1.9.7h/IDEA-1.3.1]

: Task Knowledge for
Fault-diagnosis

[Implicit Design]

Hierarchy of Tasks:
1: Symptom Detection
2: Hypothesis Generation
3: Hypothesis Discrimination

: Inference Support
An Agent-based Library of

Fault-case Reasoning Models
of Network Resources
[Explicit Design]

Modeling the cause-effect relations
 among the occurring faults

Java-code (as the base-processes
of DASH-agents) maps the

functionality of empirical
knowledge, and provides the

inference support with the run-time
status data through shell-scripts

[Java-2-SDK-1.6.0]

Agent-based middleware
functions according to the
underlying task hierarchy

Experiential Knowledge
For performing the management tasks

Base-processes invoked by the agents, access the run-time dynamic information
for reasoning, during the phase of fault-detection and cooperative problem-solving

Experiential knowledge manipulates the domain content for reasoning with the run-time status data

Produced with Protégé: 3.4 (Jambalaya Tab)
http://protege.stanford.edu/

Ontology Metrics
Classes : 28

Instances : 27
DataType Properties: 8

ObjectType Properties: 4

Fig. 3. Standard inheritance view of network systems’ domain knowledge ontology.

Design and Implementation of a Reusable Knowledge Model for Supporting the Network Management Functions 23

system, and their crucial properties are specified through an OAV (object-attribute-value) mechanism, to make it
compatible with the OAV-type data of production rule specifications of software agents. Current version of the domain
ontology (DO) embeds the light-weight semantics, and contains 28 classes, 27 instances, and 12 DataType/ObjectType
properties.

� Dynamic Status Information

This is the run-time statistical data collected and analyzed through RMON-MIB (Remote Network Monitoring—
Management Information Base) or SNMPv2-MIB (Simple Network Management Protocol version:2—MIB). The
network administrator interprets this raw dynamic status data (event-logs), to locate the root-cause of failures occurring
in the network system.

� Experiential Management Knowledge

—‘‘Inference Support’’ is modeled as FCRMs (Fault-Case Reasoning Models) which depict the behavior of various
anomalies occurring in an operational network. There exist some faults in the NMS which are not due to the
malfunctioning of physical devices, but occur as a result of software exceptions. The reasoning knowledge prescribes
the execution of various task relevant goals in the operational network system, and is incorporated as the FCRMs as
shown in Fig. 4. These models depict the behavior of various anomalies occurring in the network objects (physical
devices) and resources (software applications), and are based on the observation and experience of the network experts.
In the proposed prototype system, the application scenarios of a mail-server, Web-server, and router related anomalies
have been designed to offer great flexibility in the diagnosis process.

The libraries of fault-case reasoning models are constructed from a-priori expert knowledge of the probabilities that a
specific set of cascading faults, causes the initial symptom. This basically means that we use a causal model of the
anomalies to generate those hypotheses that cover or imply all the faulty observations. The cause-effect relationships (a
directed acyclic graph where the nodes represent the events and whose directed edges represent causality) among the
faults have been explicitly encoded as the production rule-type representation of the DASH (Distributed Agent System
based on Hybrid Architecture) [7] agents’ knowledge. The FCRMs basically group these small-grain agents to
effectively control and reduce the agent messaging traffic, as well as maximize reusability and modifiability.

Moreover, the inference supports are executed on the way of rule invocation. This implies that the agents’ rules
support inferences during problem-solving, by invoking the underlying Java-based networking routines (base-processes
of software agents), upon interaction with the run-time dynamic status information (event-logs generated upon the
execution of the Bourne-Again-Shell [bash] scripts), of the operational network system. In addition to this, the
automated reasoning tasks with the run-time data are performed by the system agents, in conjunction with the static
domain-specific domain ontology, as shown at the bottom-line text of Table 1. Agents’ production rule-sets simplify
the issuance of rule specification, and enhance the flexibility and provide efficient maintenance of the knowledge-based
system. Instantiation of the rules is done when the condition part of the rule is satisfied (after being matched with
‘‘Facts’’ in the agents’ Working Memory), it is fired and its action part is executed and consequents are interpreted, by
the interaction of Java-based programs with the ‘‘syslog’’ information of the network. Then the agent knowledge
modifies dynamically according to the operational characteristics just as MIB’s information is retrievable and
modifiable in the conventional management solutions.

— ‘‘Task Knowledge Hierarchy’’ or problem solving task structures are designed as the generic hierarchy of tasks
which prescribe the execution of various activities to be performed in a domain of interest. The diagnosis is defined as
the task of identifying the cause of a fault that is manifested by some observed anomalous behavior. The main network
diagnosis task for identifying the cause of the occurring fault-symptoms decomposes as the ‘‘symptom detection,’’
‘‘hypothesis generation,’’ and ‘‘hypothesis discrimination.’’ We refer to these task structures implicitly within the
agents’ cooperative problem-solving behavior, during the operation of our prototype network system. The Java-
programs have also been designed keeping in view the underlying task hierarchy. The above mentioned three sub-tasks
are the core of the network management system, and these are the ones for which the knowledge of the agent-based
middleware system has been designed. The fault-symptom taxonomy contains the knowledge of nearly all the possible
failures, which could be encountered by the network user. This hierarchical-tree consists of fault-symptoms
corresponding to the Application, Transport, Network and Data-link layers of the standard OSI/ISO (Open Systems
Interconnection/International Standards Organization) model. The fault-symptoms are forwarded in an ordered manner
to the fault-detection agent, which determines the actual occurrence of these fault-symptoms in the network system.

Figure 5 shows a flow-chart representing the key functionality of the diagnosis task in our proposed system. When a
fault is detected in the experimental network system, then the hypotheses (probable causes of the detected fault)
embedded in the fault-case reasoning models about the likely cause of a symptom, are checked by the cooperative
problem-solving functions of the multi-agent based middleware system. After the root-cause of the fault-case under
consideration has been investigated fully, then another fault-symptom from the fault-symptom taxonomy is forwarded
to the system. And this iterative process continues round the clock, for providing the automated fault detection and
diagnosis support to network management functions. Figure 6 indicates the interaction and seamless coupling among
various knowledge components in our proposed system.

24 ABAR and KINOSHITA

“Router
Unreachable”

Router-Ag

Router
Congestion

High Network
Traffic/

Broadcast-
Storm

High percentage of
ICMP messages

transmitted & received
by router

icmpInMsgs
icmpOutMsgs

Ethernet collisions
causing increased

number of
retransmissions

tcpRetransSeg

Packet loss/Network-
Paging

ipInDiscards
ipOutDiscards

Transmission
of Bit-errors

Excessive number of
user-requests

Hardware fault
[Interface down]

Route-setting
error

Port-forwarding
error

Router-A-Configuration-Ag

Router-A
Configuration

Failure

Router-congestion-Ag

Hosts’ misconfigured
subnet-address

Hacker attack

(e) Fault-case reasoning
model of the router

anomalies

SMTP-server
Unreachable

MX-record
failure

“Error in
Sending Mail”

Mail-transfer-Ag

SMTP port-
setting failure

NIC
problem

Throughput-Ag

SMTP-server
process down

Throughput
degradation

Cable
connectivity failure

Router
anomaly

DHCP-limit
over

DHCP-Ag

Invoke
“Router-Ag”

DNS-server
Unreachable

DNS port-
setting failure

DNS-server
process down

Port#: 53 firewall
blocked

SMTP-server
configuration errors

POP-server
Unreachable

POP port-
setting failure

Port#: 110
firewall blocked

POP-server
process down

High traffic in
Application-server domain

“Error in
Receiving Mail”

SMTP-server-Ag

DNS-server-Ag

POP-server-Ag
Port#: 25

firewall blocked

Network-traffic-Ag

DNS-server
configuration errors

POP-server
configuration errors

(b) Fault-case reasoning model
of the mail-server anomalies

“Web-browsing
Error”

Web-browsing-Ag

HTTP-server
Unreachable

HTTP port-
setting failure

NIC
problem

Throughput-Ag

HTTP-server
process down

Throughput
degradation

Cable
connectivity failure

Router
anomaly

DHCP-limit
over

DHCP-Ag

Invoke
“Router-Ag”

DNS-server
Unreachable

DNS port-
setting failure

DNS-server
process down

Port#: 53 firewall
blocked

HTTP-server
configuration errors

Web-server
Generated

Error
Messages

Cookie-restriction
setting

Remote host refused
the connection

High traffic in
Application-server domain

HTTP-server-Ag

DNS-server-Ag

Web-error-msg-Ag

Port#: 80
firewall blocked

Network-traffic-Ag

DNS-server
configuration errors

Invalid URL

(d) Fault-case reasoning model
of the web-browsing anomalies

“Fault-symptom
Detected”

Main-Agi

Secondary-
cause: A-3

Secondary-
cause: A-2

Secondary-
cause: A-1

Root-cause: A

Secondary-
cause: B-1-2-3

Root-cause: B-1

Root-cause: B-2

Root-cause: B-3

PS-Agk+1

PS-Agk

----- Initially detected anomaly

----- Secondary-cause of anomaly

----- Root-cause of anomaly

(a) General
representation
of a fault-case

reasoning model

FTP-server
Unreachable

“File Transfer
Error”

File-transfer-Ag

FTP port-
setting failure

NIC
problem

Throughput-Ag

FTP-server
process down

Throughput
degradation

Cable
connectivity failure

Router
anomaly

DHCP- limit
over

DHCP-Ag

Invoke
“Router-Ag”

DNS-server
Unreachable

DNS port-
setting failure

DNS-server
process down

Port#: 53 firewall
blocked

FTP-server
configuration errors

High traffic in
Application-server domain

File-server-Ag

DNS-server-Ag

Port#: 21
firewall blocked

Network-traffic-Ag

DNS-server
configuration errors

(c) Fault-case reasoning model
of the file-server anomalies

Fig. 4. Fault-case reasoning models for the probable occurrence of various anomalies in the network system.

Design and Implementation of a Reusable Knowledge Model for Supporting the Network Management Functions 25

3. Implementation Considerations of Multi-agent Middleware

The intelligence layer consists of multi-agents for handling the empirical task-relevant knowledge to relieve the
network operators from the tedious monitoring and control of the network system. The proposed system architecture
is supported by an Agent-based Distributed Information Processing System (ADIPS) framework (Kinoshita and
Sugawara, 1999), which is a flexible computing environment for the implementation of multi-agent systems. The
platform chosen for implementing the agent architecture of the proposed prototype system is IDEA-1.3.1 [9]— an
Interactive Design Environment for Agent designing framework—ADIPS/DASH-1.9.7h. This provides a repository-
based multi-agent computing infrastructure that includes the agent model, development tools, rule-type agent
description language, protocols, agent simulation (testing/debugging), and execution environment. The ADIPS
framework consists of three sub-systems: ‘‘DASH Repository’’ is a mechanism to manage, organize, and utilize the
reusable agents; ‘‘DASH Workplace’’ is an operational environment where the agents are deployed for cooperative
problem solving; ‘‘DASH Design Support’’ for designing and implementing the multi-agent middleware system. The
repository agents placed on a server in the distributed network system are instantiated onto the workplaces of various
computer nodes. DASH framework provides reuse-based design support for constructing the multi-agent middleware
layer. The software agent system designers can select suitable agents according to the requirement of services and
functions to construct the system in an open and distributed environment. A novel characteristic of the multi-agent
system created by the ADIPS/DASH-1.9.7h framework, is the flexible adaptation of its services to the dynamically
changing distributed environment, according to the users’ requirements as well as the QoS (Quality of Service).

Numerous multi-agent based applications using IDEA have been developed in our laboratory for quite a long time in
the context of various academic projects, and the research papers with promising results have been published in the
accredited international journals and conferences. The ADIPS/DASH-1.9.7h framework provides the agent developers
a mechanism to create an agent and wrap it with a Java process (base-process). The DASH-agent (running on a virtual

Investigate Fault-symptom
fault-symptom-set, domain-ontology,

dynamic-status-information,
fault-case-reasoning-models

Interpret Data

Perform Run-time
Fault-diagnosis Checks

Generate Diagnostic-set

Detect Fault-symptom
fault-symptom-taxonomy, domain-ontology,

dynamic-status-information

Perform Run-time
Fault-detection Checks

Forward Fault-symptom to
Problem-solving Session

FS = 1

FS Exist?

YES

To

NO

‘Management Console’

FS = FS + 1

FS = Fault-symptom

Fig. 5. Flow-chart of fault-management task hierarchy in the proposed system.

26 ABAR and KINOSHITA

machine) controls and monitors the base-process running on a distributed computing platform. Java-2-SDK-1.6.0 has
been utilized to create the networking routines as the base-processes of DASH-agents, which work in conjunction with
their corresponding Linux-based Bourne-Again-Shell [bash] scripts (for the command-line interpreter) and their
corresponding output generated on executing the bash-scripts. The GUI (Graphical User Interface) of the management
console has been constructed using Java-Swing Toolkit (JFC-API).

3.1 Design Specifications of Multi-agent System

Key role of the agents in our system is to actualize the autonomous fault monitoring and detection function. The
internal state knowledge of the system agents comprises of five vital ingredients:
[ID-K] Identification Knowledge specifies the environment or the system where the workplace agents are instantiated.
[FD-K] Fault-Detection Knowledge is expressed as the production rule-type instructions in an agent. FD-K

inevitability constitutes the core knowledge for detecting the anomalies. For each initial fault symptom reported,
various run-time checks performed, and the information obtained (about the occurring obstacle) is compared with
the pre-defined error string, and then the result is forwarded to the GUI of the management console.

[PS-K] Problem-Solving Knowledge is expressed as the production rule-type instructions in an agent. PS-K
inevitability constitutes the core knowledge for diagnosing the anomalies. For each initial fault symptom detected,
various run-time checks performed for all probable occurrences of the fault-symptom, and the information
obtained (about the root-cause of the obstacle) is compared with the pre-defined error string, and then the problem-
solving findings are forwarded to the GUI of the management console.

[R-K] Resource Knowledge specifies the structure and syntax of the diverse range of information required during the
agents’ cooperative problem solving phases. For instance, the run-time log-information acquired through the
‘‘syslog’’ (a standard logging solution for Unix and Linux systems), and the associated output generated as text-
files. R-K also comprises of the faults-related hierarchical knowledge, and the static domain ontological data
expressed as ‘‘Facts’’ in the Working Memory of a DASH-agent.

[CM] Cooperation Mechanism represents the protocol sequences of inter-agent cooperation/communication sessions
as illustrated in Fig. 7 and Table 2.

Inference Support

Experiential Management Knowledge

Dynamic Status
Information

Event-log

Java networking
routines interact with

the run-time generated
data of the operational

network system,
through shell-scripts

Task Knowledge

Symptom
Detection
Pre-defined fault-
symptoms in the
fault taxonomy
are utilized, to
initiate the real-
time fault-
detection task in
the network
system

Hypotheses
Generation
All fault
probabilities
based on
the detected
fault-symptoms,
are considered
to be evaluated

Hypotheses
Discrimination
Inter-agent
cooperation in
conjunction with
the real-time
dynamic status
information and
domain content,
finds the exact
cause of anomaly

Diagnostic reasoning sessions
represented as a hierarchy of tasks

Multi-agent
Middleware System

PS-AgkA-Ag

FD-Ag
FSO-Ag

M-Agi

DO-Ag

Static Domain Data
Domain-specific concepts

organized as ontology

Hierarchically organized
Pre-defined fault-symptoms

Fault-symptom Taxonomy

Management
Console

An Agent-based Library of
Fault-case Reasoning Models

Rul e- 01

.
.

Rul e- 02

Rul e- n

Fault-Model: m

Agent - 0 1

.
.

.
.

.

Rul e- 01

.
.

.

Rul e- 02

Rul e- n
Agent - 0 2

Rul e- 01

.
.

.

Rul e- 02

Rul e- n
Agent -z

Rul e- 01

.
.

.

Rul e- 02

Rul e- n

Fault-Model: 2

Agent - 0 1

.
.

.
.

.

Rul e- 01

.
.

.

Rul e- 02

Rul e- n
Agent - 0 2

Rul e- 01

.
.

.

Rul e- 02

Rul e- n
Agent -z

Rule-01

.
.

.

Rule-02

Rule-n

Fault-Model: 1

Agent-01

.
.

.
.

.

Rule-01

.
.

.

Rule-02

Rule-n
Agent-02

Rule-01

.
.

.

Rule-02

Rule-n
A

Network expert models the cause-effect
relationships among the occurring faults

gent-z

Fig. 6. Functional representation of the communication networks’ knowledge resources.

Design and Implementation of a Reusable Knowledge Model for Supporting the Network Management Functions 27

3.2 Functional Behavior of Agents

The functionality of an agent is about how to analyze and process the users’ query, as well as defining the
cooperation strategy among the multiple systems’ agents. The agents embedded in the middleware intelligent support
layer, interact with each other cooperatively during the course of network-monitoring and fault-diagnosis sessions.
Multi-agent middleware implies that the network diagnostic system can be more scalable, flexible, extensible, and
interoperable. Table 3 shows the task specifications of agents in our prototype system. Agents work in conjunction with
the dynamic status information (event-logs) of the network system, and the periodic interaction among the agents
facilitates the autonomous network management mechanism. Owing to the distributed nature of agents as well as
platform independence of Java base-processes, the active utilization of run-time dynamic status information of the
large-scale, heterogeneous and distributed environments has become a reality. The functional behavior of our proposed
system is explained below:
1: All agents are invoked in the repository of management console as depicted in Fig. 8.
2: On the management console, A-Ag is automatically invoked from the repository to the workplace. Figure 8 also

shows the IDEA-1.3.1 Simulator depicting the repository agents instantiated onto the workplace of management
console.

3: A-Ag invokes the DO-Ag and FSO-Ag from the repository to the workplace of the management console.
4: DO-Ag (Domain-Ontology Agent) interacts with DO [a Protégé-generated OWL-script], through the OWLAPI-

based parser, and fetches the domain ontological concepts in its Working Memory (WM) as shown in Fig. 9.
5: DO-Ag extracts the list of IP-Addresses from the DO and invokes FD-Ag on the workplace of all nodes

simultaneously [Fig. 10], to detect the presence of the fault-symptoms occurring in our experimental TCP/IP-
based communication network system.

6: On the management console, the GUI (Graphical User Interface) of the prototype system is generated.
7: FSO-Ag interacts with fault-symptom taxonomy [a Protégé-generated OWL-script], through the OWLAPI-based

parser. The parsed concepts, attributes and instances of fault-symptom taxonomy then appear as OAV-type list of
DASH-Facts in the WM of the FSO-Ag.

8: FSO-Ag forwards these pre-defined fault-symptoms one-by-one automatically to the FD-Ags on all the nodes to
detect the probable occurrence of the fault-symptoms in the network system.

9: FD-Ags interact with DO-Ag on the management console, and on need-cum-basis fetch a required list of the parsed

Hypothesis
Discrimination

Interacts with fault-
symptom taxonomy

Fault-detection-Agent

Domain-Ontology-Agent

Main-Agent Administrator-Agent

Interacts with dynamic
status information (run-
time command-line
parameters) to detect
the fault-symptom if it
happens in the system

forwardFaultSymptom

Presents the
diagnostic-set
to management
console

Problem-solving-Agent

checkFaultSymptom

investigateFaultCause

forwardFaultCause

Interacts with dynamic
status information
(run-time command-
line parameters) to
determine the root-
cause of a fault-
symptom

1
2

3

4

5

7

forwardDomainData

requestDomainData

8

6

9

10

Fault-symptom-Agent

FS-Ag FD-Ag M-Ag1

M-Ag2

M-Agi

PS-Ag1

PS-Agk

PS-Ag2

A-Ag

DO-Ag

requestDomainData

forwardDomainData

Fault-symptom
Detection

Hypothesis
Generation

Hypothesis
Discrimination

11

12

Interacts with
domain ontology

13

Fig. 7. Communication/cooperation protocol-sequences of the multi-agent middleware system.

28 ABAR and KINOSHITA

concepts, attributes and instances of DO as the OAV-type list of DASH-Facts. FD-Ags also interact with the
corresponding Java networking routines, which in conjunction with the run-time processes or dynamic status data
of the network system, locate the initial error occurred in the network system. Figure 11 shows an excerpt of code
representing the fault-detection knowledge of an FD-Ag. Shell-scripts (for the conventional network management
commands (netstat, ping, ipconfig, route, arp, ps, traceroute, tcpdump, nslookup etc.) are called by the agents in the
system, and the output generated by the shell-scripts is directed to create text-files, which are checked for the
specific pre-defined error-strings by the agents’ Java base-processes.

10: If a fault symptom has been detected by the FD-Ag on any machines (there could be more than one fault-
symptoms happening in the network system at any given instance of time), then it is reported to the GUI of the
prototype management console.

Table 2. Agent communication protocols during the fault-detection and problem-solving sessions.

Performative Function Remark

FSO-Ag sends the pre-defined fault-

checkFaultSymptom symptom to check for its occurrence, to Symptom-detection session starts

FD-Ag on all the network nodes

forwardFaultSymptom
FD-Ag forwards the detected fault-

Symptom-detection session ends
symptom to the M-Agi

M-Agi matches the detected fault-symptom

matchFaultSymptom with the one pre-defined in the fault-case Hypothesis-generation session

reasoning models

investigateFaultCause
M-Agi requests the PS-Agk to investigate Hypothesis-discrimination

the root cause of failure session starts

requestDomainData
FD-Ag and PS-Agk request the DO-Ag for Symptom-detection, and

the domain data Hypothesis-discrimination phases

forwardDomainData
DO-Ag forwards the static domain data to Symptom-detection, and

FD-Ag and PS-Agk Hypothesis-discrimination phases

forwardFaultCause
PS-Agk reports the root cause of failure to Hypothesis-discrimination

A-Ag on the management console session ends

Table 3. Task specifications of agents in the prototype system.

Agent Nomenclature Task Specification

—Interacts with the fault-symptom taxonomy

Fault-symptom-Agent —Gets invoked by the A-Ag after the GUI instantiates onto the management-

[FS-Ag] console’s workplace

—Forwards the fault-symptom for checking to FD-Ag

—Receives the request for fault-symptom detection from the FS-Ag

Fault-detection-Agent —Interacts with the corresponding java-based networking routines

[FD-Ag] —Interacts with DO-Ag for static domain data

—Forwards the initially detected fault-symptom to M-Agi and A-Ag

Domain-Ontology-Agent
—Interacts with the Domain-Ontology (DO)

[DO-Ag]
—Receives the request for static ontological data from the FD-Ag and PS-Agk

—Delivers the static domain data to FD-Ag and PS-Agk

—Receive the initially detected fault-symptom from FD-Ag

Main-Agents —Invoke the corresponding PS-Agk

[M-Agi] —Report the root cause of fault to A-Ag

— Intimate the FS-Ag about the completion of fault-diagnosis phase

—Start problem-solving upon receiving messages from M-Agi

Problem-solving-Agents —Interact with the corresponding java-based networking routines

[PS-Agk] —Interact with DO-Ag for static domain data

—Forward the root cause of fault to M-Agi

—Receives the initially detected fault-symptom from FD-Ag, and reports it to

Administrator-Agent GUI of the management console

[A-Ag] —Receives the results of fault investigation from M-Agi and reports it to GUI of

the management console

Design and Implementation of a Reusable Knowledge Model for Supporting the Network Management Functions 29

Working-Memory area
shows the domain
ontological facts

IDEA-1.3.1 [Agent Design and Simulation

A-Ag instantiated onto
the workplace of

management console

Management Console

Fig. 8. IDEA-1.3.1 Simulator depicting repository agents instantiated onto the workplace of management console.

Knowledge Template of DO-Ag

Knowledge Template of DO-
Ag [OWLAPI-2.1.1 Parser]

WM of DO-Ag
[IDEA-1.3.1]

Fig. 9. Domain-Ontology Agent (DO-Ag) fetching the ontological concepts in its Working Memory (WM).

30 ABAR and KINOSHITA

11: FD-Ag sends the detected fault-symptom to Main-Ags (Mail-transfer-Ag, File-transfer-Ag, Router-Ag, and Web-
browsing-Ag) on the management console. M-Ags match the detected fault-symptom with the one pre-defined in
their fault-case reasoning models. The purpose of Main-Ags is to effectively control and reduce the agent
messaging traffic, thereby forwarding the detected fault-symptom to only the relevant problem-solving agents (PS-
Ags) for investigating the root-cause of the problem.

12: PS-Ags have been designed to perform checks for a testable hypothesis (an optimal order for a set of tests is
determined with the management expertise and encoded as agent-based fault-case reasoning models) on a specific
machine. PS-Ags interact with DO-Ag on the management console (upon need-cum-basis), and fetch the parsed
concepts, attributes and instances of DO as the OAV-type of DASH-Facts in the WM [Fig. 12]. PS-Ags also
interact with the corresponding Java-based networking routines, which in conjunction with the run-time dynamic
status data, locate the root cause of initial fault-symptom in the network system. The process of small-grain PS-Ags
interacting with Java base-processes has been depicted in Fig. 13.

13: Findings (hypothesis generation phase) of the problem-solving agents are forwarded to the A-Ag residing on the
management console for display on the GUI. Once the agents cooperate and interact with each other during the
complex problem-solving sessions to resolve a particular failure condition, a part of their embedded knowledge
modifies or updates dynamically, according to the run-time conditions of the network system. Then the aggregated
root-cause response is reported to the management console thereby restarting the fault monitoring, detection, and
diagnosis processes.

4. Test Environment

Our experimental network system comprises of 100BASE-TX Ethernet, firewall configured as NAT (Network
Address Translation), routers, bridges, various personal computers arranged in three Subnetworks (A, B, C) [Fig. 14].
Subnetwork-A is configured as DMZ (DeMilitarized Zone) with dynamic IP-address range 172.17.1.0/24. The
application server (HTTP, SMTP, POP, FTP, DNS), the SNMP-server, and the Chariot traffic generator, and the

Management Console
IDEA-1.3.1 [Agent Design and Simulation

(IPaddress-list :list (172.17.1.2 172.17.1.5 172.17.3.1
172.17.1.2 172.17.3.3 130.34.243.6 172.17.1.2 172.17.2.2
172.17.1.4 172.17.3.5 172.17.1.3 172.17.2.3 172.17.3.2
172.17.10.1 172.17.1.2 172.17.1.1 172.17.3.4 172.17.1.2

DO-Ag

FD-Ag

DO-Ag

Fig. 10. Domain ontology agent (DO-Ag) forwarding the list of IP-Addresses to fault-detection agents (FD-Ags).

Design and Implementation of a Reusable Knowledge Model for Supporting the Network Management Functions 31

network management console resides in the Subnetwork-A. The workstation and a notebook computer system
constitute the Subnetwork-B, and the nodes of Subnetwork-C comprise of three notebook computers and a desktop
system. Moreover, on each node Fedora Core:ver-2.0 has been installed as an OS (Operating System) for the machines.

Fig. 11. Code-snippet representing the fault-detection knowledge of FD-Ag.

Fig. 12. DO-Ag forwarding the static domain-content to the problem-solving agent (SMTP-server-Ag).

32 ABAR and KINOSHITA

The front-end GUI (Graphical User Interface) of the management console has been created using Java Swing-toolkit.
This test-bed system facilitates the automated fault monitoring, detection, and diagnosis sessions that can run
unattended all the time, thereby maximizing its utilization for supporting the network management tasks.

Main-Agents
“Hypothesis Generation”

Fault-detection-Agent

SMTP-server-Ag

Rule-01

Rule-02

Rule-n

.

.

.

Java Base-process

SMTP-server-Ag

Java Base-process

DNS-server-Ag

Java Base-process

POP-server-Ag

Java Base-process

“Hypothesis Discrimination or Problem-solving Phase”
Agents’ Java base-processes are required to locate the root cause of failure

DHCP-Ag

Fig. 13. Small-grain PS-Ags agents interacting with Java base-processes.

App.Sv-Maple.A
172.17.1.2

SMTP
POP
FTP

HTTP
DNS

DHCP

Note.Bk-Kane.C
172.17.3.4 Desk.Tp-Lynx.C

172.17.3.5

Note.Bk-Pisces.C
172.17.3.3

Work.St-Aral.B
172.17.2.2

Internet

Router-B
172.17.2.1

Bridge-ABC

SNMP.Sv-Coral.A
172.17.1.3

Note.Bk-Elm.B
172.17.2.3

www.sem-k-nms-b.com
172.17.2.0/24

Hub-B

Hub-A

Router-C
172.17.3.1

Hub-C

www.sem-k-nms-c.com
172.17.3.0/24

Management.Console-A
172.17.1.4

Chariot.Console-A
172.17.1.5

Traffic
Generator

Desk.Tp-Fawn.C
172.17.3.2

Router-A
172.17.1.1

www.sem-k-nms-a.com
172.17.1.0/24

172.17.0.1

17
2.

17
.0

.2

17
2.

17
.0

.4

17
2.

17
.0

.3

130.34.243.6

Net.Protect
NAT

OS: Fedora-Core-2.0

Agent Development Tool: IDEA-1.3.1
Agent Base-processes: Java-2-SDK-1.6.0

Ontology Development Tool: Protégé-3.4
Ontology Parser: OWLAPI-2.1.1

Fig. 14. Configuration of the test network system.

Design and Implementation of a Reusable Knowledge Model for Supporting the Network Management Functions 33

4.1 Identification of Application Scenarios

For evaluating the performance of our prototype system, some real-time tests have been designed and compared with
the conventional network management tools and mechanisms. Our system monitors and detects the networks’
operational anomalies automatically, generates hypotheses and then in conjunction with the operational networks’
dynamic status information (incorporated with Java base-processes) locate the root cause of failures, thereby reducing
the workloads of network administrator remarkably.

A couple of test-cases (related to the commonly occurring network anomalies in our experimental environment) have
been designed as depicted in Table 4, to demonstrate the functionality of our prototype system. A typical observation is
that the failures in the TCP/IP-based networking environment occurring at the lower-layers (‘‘Data-link’’ or
‘‘Network’’), cause malfunctioning at the ‘‘Application’’ level significantly. Therefore, the lower-level failures in the
communication network system must be monitored and detected effectively. In addition to this, some other lower-layer
related test scenarios have also been modeled; for instance, the throughput bottleneck or high packet loss-rate occurs as
a consequence of the workstation or router congestion as well as traffic over-load at the application server. Furthermore,
the anomalies such as Web-browsing unavailable, an FTP-related error due to the routers’ broken connectivity, DNS/
SMTP/POP port-setting or configuration problems etc., have also been taken into account. Web-browsing errors, such
as the connection refused or error-page displayed, if the port of the HTTP-server is blocked by the firewall or when the
server is down, have also been considered. For the Physical/Data-link layer anomalies, the failure of router or NIC
(Network Interface Card) has been considered, due to which the broadcast storms or Ethernet collisions cause an
increased number of re-transmissions, thereby reducing the throughput of the network to a minimum. The systems’
experimental results confirm a marked reduction in the management-overhead of the network administrator, as
compared to the manual network management techniques, in terms of the time-taken (from the fault-symptom detection
until its root cause determination) and effort-done (number of procedures adopted) during a particular fault-diagnosis
session. The accuracy of network management functions in the proposed system depends on the quality of knowledge
modeled in the form of domain ontology, fault-symptom taxonomy, agent-based fault-case reasoning models, Java
base-processes and bash-scripts. Experimental results confirm that accuracy of our automated prototype system fully
complies with the network management standards.

5. Evaluating the Modifiability/Reusability Aspects of the System Design

Currently, reuse-based software development involves identifying knowledge components reusable in different
application domains. The reprocessing of knowledge components for expert systems generally conforms to the
following characteristics: modifiability, reusability, and shareability; and same are the design focus of our proposed

Table 4. Application scenarios for experimenting with the prototype system.

Test Network Node Initially Detected
Root-cause of Failure

Case (Machine) Fault-symptom

Router A-1 Network-paging [Slow-speed] Excessive User-requests or Connectivity Failure

1 Performance-degradation occurs due to data bursts caused from the excessive number of user-requests, or

equipment/link failure

Work-St Aral FTP-server Access Denied Power Failure in Router-A 1

2 Power failure in Router A-1 results in broken connectivity. Error messages from the data-transport layer are generated

for all affected connections. As a consequence, disruption in the file access occurs

Note-Bk Elm Error in Sending Email SMTP-server Process Down

3 SMTP-server process ‘‘sendmail’’ goes down in the application server [App-Sv Maple], thereby causing an error while

sending the email

Desk-Tp Fawn Host Connection Refused HTTP-server Port Firewall-Blocked

4 Port of HTTP-server in Subnet-A is blocked by the firewall [ip-tables], causing the connection refused error or an error-

page is displayed

Note-Bk Pisces Error in Receiving Email POP-server Port-setting Failure

5 POP-server port has been configured incorrectly in the application server [App-Sv Maple], thereby causing an error in

receiving the email

6
Desk-Tp Lynx Destination Host Unreachable Incorrect NIC-setting

Due to the NIC-setting problem of Desk-Tp Lynx, connection is refused to HTTP-server in Subnet-A

7
Note-Bk Kane Web-browsing Error DNS Configuration Problem

DNS misconfiguration results in the failed domain name resolution, hence Web-browsing is inaccessible

34 ABAR and KINOSHITA

networks’ knowledge framework. Our modeling approach for the communication networks’ knowledge acquisition
results in a set of reusable components, such as the networks’ domain ontology, fault symptom taxonomy, agent-based
fault propagation models, Java base-processes, and bash-scripts of the software agents.

5.1 Modifiability Assessment

The networks’ static domain content has been represented as the domain knowledge ontology as well as fault-
symptom taxonomy, and it is placed at the centralized management console in our prototype communication network
system. Upon the need to scale-up the network system, a considerable reduction in effort has been reported to update
the domain knowledge ontology in case of the proposed system. This is due to the reason that the static domain
ontology can be modified in an efficient manner, due to being present at a centralized location (management console) in
the network system. Otherwise, it would have been required to modify the static domain content on each distributed
network node. Similarly, the domain ontology allows an incremental development of the static network content and it is
gradually expandable over time without loosing integrity for the altered configuration of the network system (taking
into consideration the specific characteristics of the communication network domain). When it is required to update or
amend the fault-symptom taxonomy, this can be done very easily by enhancing the fault-symptom list within it, on the
centralized management console. Hence, the acquisition, sharing, and utilization of static domain knowledge have been
facilitated in the proposed prototype system.

5.2 Reusability Assessment

In the proposed system, the expertise of human networking expert has been declaratively encoded as agents’
production rules to facilitate the reusable knowledge acquisition, representation, sharing mechanism. Table 5
demonstrates a considerable reduction in an effort (an average of �52:65%) while designing the agent-based FCRMs
(Fault-Case Reasoning Models), for various application scenarios. The FCRM of SMTP-related failures has been
created initially as shown in the Fig. 4(b). When this model was reused for POP-related anomalies, the seven agent-
rules were reused without any modification, whereas it was required to create only four fresh rules for the POP-specific
problems. The knowledge acquisition and reuse activity has reported that when these small-grain agents were reused
for POP, FTP, HTTP and router-related anomalies, a considerable reduction in the design-effort for the reuse of
experiential knowledge (agents’ production rules of FCRMs) has been confirmed as shown in Fig. 15. More
specifically, these pre-existing communication networks’ domain-specific libraries of small-grain agents in the system
can be reused flexibly across different application scenarios. A knowledge engineer can select the fragments from our
library of reusable knowledge components in accordance with the suitability criteria, and combine them instead of
constructing strategy from scratch thereby minimizing the development time and maintenance effort and costs.
However, it is observed that the Java base-processes or the networking routines associated with the agent programs, are
more generic in nature, and can be reused flexibly across various test-cases in the proposed system as well as other
practical diagnostic domains.

Table 5. Reuse of agent-based fault-case reasoning models in the proposed system.

Fault-Case
Agent-Rules Reduction in

Reasoning Model Agent Base-Process
effort for the

(FCRM)
Total Reused reuse of agent

rules (%)

FCRM for

SMTP-related 5 2 12 0 0

Anomalies

FCRM for

POP-related 5 2 11 7 63.63

Anomalies

FCRM for

FTP-related 5 2 11 7 63.63

Anomalies

FCRM for

HTTP-related 6 2 14 7 50

Anomalies

FCRM for

Router-related 2 1 6 2 33.34

Anomalies

Design and Implementation of a Reusable Knowledge Model for Supporting the Network Management Functions 35

5.3 Analysis—Modifiability/Reusability Aspects of the Proposed Knowledge Model

Estimation of the generic worth of knowledge structures in terms of reusability, maintainability, and modifiability
has been performed. In the proposed system, the knowledge items (domain ontology, fault-case propagation models,
multi-agents in the middleware layer and the corresponding Java base-processes, bash-scripts) have been designed,
constructed, maintained, and refined independently and flexibly. The modifiability/reusability analysis concludes that
when some alteration in the network systems’ domain content and network management tasks/functions is required to
be performed, then it does not reflect any significant changes in the knowledge fragments embedded in the proposed
system. The knowledge components are adaptable and scalable and can therefore be appropriately configured and
integrated into other application environments in a seamless manner. A part of the content of the pre-existing domain
ontology, FCRMs, agent modules, Java base-processes) can be copied to another at design-time and compiled at run-
time possibly after some minor revisions and refinements according to the characteristics and requirements of the new
environment. It has been reported that the experiential knowledge reuse reduces the design-effort for agent-based
FCRMs to approximately an half. This makes the knowledge acquisition activity less complex. However in this
analysis, it has been assumed that an equal amount of effort is required to design/upgrade/modify each knowledge
component.

6. Concluding Remarks

Key to automated network management lies in leveraging the network systems’ knowledge resources to reduce the
communication complexity and administrative overhead. The focus point of our work is the elicitation of
communication networks’ knowledge in a generic and reusable manner, to be applicable during the course of
automated performance analysis, and anomaly monitoring and detection in the computer (data) communication
networks. We have presented a reuse-based innovative knowledge acquisition, representation, and sharing approach for
the automated management support to communication network systems. More specifically, the designed communi-
cation networks’ resource knowledge module comprises of the static content represented as domain knowledge
ontology, and the management expertise are encoded as fault-case causal reasoning models of the network objects,
which are realized as the production rule-type knowledge of the software multi-agent based middleware. The agents’
rules along with the embedded generic Java-based problem solving algorithms and real-time log information perform
the automated management tasks. For the proof of concept, the deployment of some test-bed application scenarios has
been done in the test network system. This research project results in a fully functional practical network management
system, to provide the automated network management support round the clock, thereby reducing the workloads of the
network administrator remarkably. This effort can be regarded as one of the initial steps towards the construction,
mapping, and implementation of domain content and fault-case causal reasoning knowledge models, for providing the
automated management support to the distributed communication network systems. In a nutshell, this research project
serves as an ample resource for engineering the next-generation state of art reuse-based knowledge solutions for the
adaptive and autonomic computing in distributed environments.

Acknowledgements

This research has been partially supported by the Japan’s MEXT ‘‘21st-Century COE (Center Of Excellence)
Program [System Construction of Global-Network-Oriented Information Electronics]’’ and the ‘‘Global COE Program

0

2

4

6

8

10

12

14

16

1 2 3 4 5

0

10

20

30

40

50

60

70

Total Agents Reused Agents % Reduction in Effort

A
ge

nt
 R

ul
e

FCRM

R
ed

uc
tio

n
in

 e
ffo

rt
 fo

r
th

e
re

us
e

of
 a

ge
nt

 r
ul

es
 [%

]

Fig. 15. Reuse of agent-based fault-case reasoning models in the proposed system.

36 ABAR and KINOSHITA

[CERIES]’’ of Tohoku University (2005–2009), and the ‘‘Tohoku Kaihatsu Kinen Foundation,’’ Japan (2006–2008).
Authors are thankful to Dr. Yukio Iwaya, Dr. Takahiro Uchiya, Dr. Susumu Konno, Mr. Takahide Maemura, and Mr.
Satoshi Yoshimura for their worthful technical assistance. Authors would like to acknowledge the valuable comments
and suggestions of anonymous reviewers.

REFERENCES

[1] Abar, S., Hatori, H., Abe, T., and Kinoshita, T., ‘‘Agent-based Knowledge Acquisition in Network Management Domain,’’
Proceedings of the 19th IEEE International Conference on Advanced Information Networking and Applications (AINA-05),
Vol. 1, Taipei, Taiwan, 687–692 (2005).

[2] Abu-Hanna, A., and Jansweijer, W., ‘‘Modeling Domain Knowledge Using Explicit Conceptualization,’’ IEEE Expert, Vol. 9,
No. 6, 53–64 (1994).

[3] Bernaras, A., Laresgoiti, I., Bartolome, N., and Corera, J., ‘‘Building and Using an Electrical Network Ontology for Fault
Diagnosis,’’ Engineering Intelligent Systems, Vol. 6, 3–11 (1998).

[4] Brewster, C., and O’Hara, K., ‘‘Knowledge Representation with Ontologies: The Present and Future,’’ IEEE Intelligent
Systems, Vol. 19, No. 1, 72–73 (2004).

[5] Chandrasekaran, B., Johnson, T. R., and Smith, J. W., ‘‘Task Structure Analysis for Knowledge Modeling,’’ Communications
of ACM, Vol. 35, No. 9, 124–137 (1992).

[6] Clancey, W. J., ‘‘Heuristic Classification,’’ Artificial Intelligence, Vol. 27, No. 3, 289–350 (1985).
[7] DASH—Distributed Agent System based on Hybrid architecture. Available Online: http://www.agent-town.com/dash/

index.html
[8] Hamdi, M. S., ‘‘MASACAD: A Multi-agent based Approach to Information Customization,’’ IEEE Intelligent Systems,

Vol. 21, No. 1, 60–67 (2006).
[9] IDEA—Interactive Design Environment for Agent designing framework Available Online: http://www.ka.riec.tohoku.ac.jp/

idea/index.html
[10] Kinoshita, T., and Sugawara, K., ‘‘ADIPS Framework for Flexible Distributed Systems,’’ In: Ishida, T. (ed.): Multiagent

Platforms. Lecture Notes in Artificial Intelligence, Vol. 1599, Springer-Verlag, 18–32 (1999).
[11] Konno, S., Iwaya, Y., Abe, T., and Kinoshita, T., ‘‘Design of Network Management Support System Based on Active

Information Resource,’’ Proceedings of the 18th IEEE AINA Conference, Fukuoka, Japan, 102–106 (2004).
[12] Lemos, M. A., Barros, L. N., Bernal, V., and Wainer, J., ‘‘Building Reusable Knowledge Models for the Communication

Network Domain,’’ Proceedings of the 4th Australian Knowledge Acquisition Workshop (AKAW), Sidney, Australia, 381–390
(1999).

[13] Li, J., and Leon, B. J., ‘‘SNMK: Simple Network Management Knowledge,’’ Proceedings of the 6th IEEE NOM Symposium,
Vol. 2, 381–390 (1998).

[14] Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., and Swartout, W. R., ‘‘Enabling Technology for Knowledge
Sharing,’’ AI Magazine, Vol. 12, No. 3, 36–56 (1991).

[15] Noy, F. N., and Musen A. M., ‘‘Ontology Versioning in an Ontology Management Framework,’’ IEEE Intelligent Systems,
Vol. 19, No. 4, 6–13 (2004).

[16] O’Leary, D. E., ‘‘How Knowledge Reuse Informs Effective System Design and Implementation,’’ IEEE Intelligent Systems,
Vol. 16, No. 1, 44–49 (2001).

[17] Protégé—A Knowledge Acquisition Tool. Available Online: http://protege.stanford.edu/
[18] Schreiber, G., Wielinga, B., Hoog, R., Akkermans, H., and Velda, W. V., ‘‘CommonKADS: A Comprehensive Methodology

for KBS Development,’’ IEEE Expert, Vol. 9, No. 6, 28–37 (1994).

Design and Implementation of a Reusable Knowledge Model for Supporting the Network Management Functions 37

