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Motivated by the work of Asano et al. [1], we consider the distance trisector problem and zone diagram
considering segments in the plane as the input geometric objects. As the most basic case, we first consider the pair
of curves (distance trisector curves) trisecting the distance between a point and a line, as shown in Figure 1. This is
a natural extension of the bisector curve (that is a parabola) of a point and a line. In this paper, we show that these
trisector curves C1 and C2 exist and are unique.
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1. Introduction

1.1 Distance Trisector

Bisector of two objects play fundamental roles in mathematics and computer science. We are taught in elementary
school that the bisector of two points is the perpendicular bisector line, and in junior high school that bisector of a point
and a line is a parabola. They are among the most fundamental tools in science and technology. Also, in computational
geometry, the Voronoi diagram is a very important geometric structure, that can be considered ‘‘generalized bisector of
n points’’ [4].

It is a natural question what happens if the bisection is replaced by trisection (or more). Given two disjoint geometric
objects O1 and O2, their distance trisector is the pair of two curves C1 and C2 separating them such that C1 is the
bisector of O1 and C2, while C2 is the bisector of C1 and O2. More generally, the distance k-sector of R1 and R2 is a
series of k � 1 curves C1;C2; . . . ;Ck�1 such that Ci is the bisector of Ci�1 and Ciþ1 for i ¼ 1; 2; . . . ; k � 1, where we
regard C0 ¼ O1 and Ck ¼ O2. The following story gives some intuition of the distance k-sector: Imagine that k � 1

robots go through between two objects in parallel. We do not know the timing of the movement of robots, but we can
guide the geometric route that each robot moves along. Then, the most safe routes (robot may often out of the route to
some extent) of k � 1 robots form the distance k-sector of two objects.

The concept of trisector curves is proposed by Asano et al. [2], and the case where both O1 and O2 are points is
studied there.
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Fig. 1. Distance trisector curves between a point and a line.
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1.2 Zone diagrams

Extending the idea of a trisector, Asano et al. [1] proposed a new kind of planar dissection called Zone diagram,
which separates n planar points by using n curves such that each curve is the bisector of a point and the union of other
curves. The left picture in Figure 2(a) shows the classical Voronoi diagram, and right picture (b) shows the Zone
diagram of seven points.

The Voronoi diagram is one of the most popular structures in computational geometry. It is frequently used as a
mathematical model to represent a pattern created by a competitive growth process where many bodies grow
simultaneously to form a geometric structure together, such as the cell structure of a biological tissue, a crystal-lattice
structure, a geographic/geological pattern, an economic/political regional equilibrium, or gravity/electromagnetic
field.

There are several generalizations and variations of Voronoi diagrams, and their geometric properties and
computational complexities are widely studied; see, e.g., [4, 5]. A common feature of these variations is that they define
partitions of space into regions (Voronoi cells), each of which is the dominating region of an input point or object.
However, geometric structures are sometimes observed in the nature in which the union of the cells has a nonempty
complement region (called the neutral zone). We can regard such a structure as a result of growth process in which the
growth terminates before the cell boundaries meet each other, and the termination is due to some non-contact action of
other regions. The Zone diagram is a way of modeling such a structure.

The idea can be explained by a story on equilibrium in the ‘‘age of wars’’. There are n mutually hostile kingdoms.
The ith kingdom has a castle at a given location pi and a territory Ri around it. The n territories are separated by a
no-man’s land, the neutral zone. If the territory Ri is attacked from another kingdom, an army departs from the castle pi
to intercept the attack. The interception succeeds if and only if the defending army arrives at the attacking point
on the border of Ri sooner than enemy. However, the attacker can secretly move his troops inside his territory,
and the defense army can start from its castle only when the attacker leaves his territory. The Zone diagram is an
equilibrium configuration of the territories, such that every kingdom can guard the territory and no kingdom can grow
without risk of invasion by other kingdoms. Mathematically, the distance of each point x on the border of the territory
Ri to the capital pi equals the distance of x to the union of the other Rj, j 6¼ i; this gives the definition of the Zone
diagram.

Contribution of this paper

Although a set of points is the most basic geometric object, it is often convenient to consider a more general
geometric object, and a set of line segments is frequently discussed in computational geometry. Indeed, Voronoi
diagram of line segments is widely studied, and it has been shown that most of algorithmic results on point set Voronoi
diagram can be extended. Therefore, it is natural to consider Zone diagram of a set of line segments.

The left picture in Figure 3(a) shows the classical Voronoi diagram, and right picture (b) shows the Zone diagram
whit seven points and three line segments.

Distance trisector is a indispensable tool to draw a Zone diagram. In this paper, we first show that the distance
trisector of two line segments uniquely exists, and give an algorithm to compute them. Indeed, the main difficulty lies in
the case where we consider the trisector between a point and a line, where the bisector is known to be a parabola. This
immediately implies that the distance 6-sector of two points exists. The method naturally leads to a practical algorithm
for computing the distance trisector, provided that we can compute the bisector of a convex curve and a point, and also
bisector of a convex curve and a line.

(a) (b)

Fig. 2. For points set: (a) the classical Voronoi diagram (b) the Zone diagram.
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2. Preliminary

Given n points p1; . . . ; pn in the plane, each point pi is assigned a territory Ri.

Ri ¼ fz 2 R
2 : dðz; piÞ � dðz; fRj : j 6¼ igÞg;

where dð�; �Þ denotes the Euclidean distance.
For a point a and a set X � R

2 we define the dominance region of a with respect to X as

domða;XÞ ¼ fz 2 R
2 : dðz; aÞ � dðz;XÞg;

where dðz;XÞ ¼ infx2Xdðz; xÞ. And similarly, for a line l and a set X � R
2 we define the dominance region of l with

respect to X as

domðl;XÞ ¼ fz 2 R
2 : dðz; lÞ � dðz;XÞg:

For a point a and a set X � R
2 the bisector of a and X is

bisectða;XÞ ¼ fz 2 R2 : dðz; aÞ ¼ dðz;XÞg:

Similarly, for a line l and a set X � R
2 we define

bisectð‘;XÞ ¼ fz 2 R2 : dðz; ‘Þ ¼ dðz;XÞg:

And more generally, for a set X and a set Y we define

domðX; YÞ ¼ fz 2 R
2 : dðz;XÞ � dðz; YÞg

and

bisectðX;YÞ ¼ fz 2 R2 : dðz;XÞ ¼ dðz;YÞg:

The following basic properties are given in [2]:

Lemma 1 (Properties of bisector).
(1) domða;XÞ is a closed convex set for every a and every X.
(2) (Antimonotonicity) The operator domð�; �Þ is antimonotone with respect to the second argument; that is, if X � X0,

then domðl;XÞ � domðl;X0Þ. Similarly, for a line l, if X � X0, then domða;XÞ � domða;X0Þ.
(3) If z is a point of bisectða;XÞ, then there exists a unique point z0 2 X nearest to z, and the segment z0z is an outer

normal of X at z0 (that is, it is perpendicular to some supporting line of X at z0), and the unique tangent of
bisectða;XÞ at z is the perpendicular bisector of the points a and z0.

3. Existence and uniqueness of distance trisector of segments

We would like to consider distance trisector curves between a pair of line segments s1 and s2. The easiest case is that
both line segments are complete lines. In that case, the distance trisector curves are naturally the angle trisector lines of
the angle between s1 and s2 (defined for each of two angles between the lines). Although angle trisecting is a famous
problem that cannot be drawn by ‘‘ruler and compas’’, it is easy to compute if we can use trigonometric functions.
Indeed, it is anciently known (Archimedes’s algorithm) that angular trisector lines can be drawn if we are allowed to
use a ‘‘ruler with a mark on it’’.

(a) (b)

Fig. 3. For points set and line segments set: (a) the Voronoi diagram (b) the Zone diagram.
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Thus, the difficulty lies in that the segments may have endpoints and the nearest point from one of the trisector curves
can be an endpoint. Indeed, it is not difficult to see that if we can prove the existence and uniqueness of distance
trisector curves between a point and a line, we can also prove the existence and uniqueness of distance trisector curves
between two given segments.

Hence, we focus on the case of a point and a line. Our main result in this section is as follows:

Theorem 1 (Existence and Uniqueness). Given a point p ¼ ð0; 1Þ and a line ‘ : y ¼ �1, there exist exactly one pair
of curves (C1, C2) that trisect them. Moreover, C1 is the boundary curve of a convex closed region, and C2 is the image
of a convex continuous function as shown in Figure 1.

Although the theorem is analogous to the one for the pair of points p ¼ ð0;�1Þ and q ¼ ð0;�1Þ given in [2], the
major difficulty is that the problem is not symmetric with respect to the x-axis if we consider the point-line problem. In
point-point problem, we can show that C2 ¼ �C1, although we do not have such nice symmetry here. Thus, in some
sense, the number of parameters is doubled.

The proof is based on construction of four sequences fi, gi, hi and ki ði ¼ 1; 2; . . .Þ of curves each of which converges
to one of the trisector curves.

Definition 1. We define 4 infinite sequences ð fiÞ, ðgiÞ, ðhiÞ and ðkiÞ of curves for i ¼ 1; 2; . . ., as follows:
(1) f1 ¼ h1 ¼ bisectðp; lÞ
(2) ki ¼ bisectð fi; lÞ, gi ¼ bisectðp; hiÞ
(3) fiþ1 ¼ bisectðp; kiÞ, hiþ1 ¼ bisectðgi; lÞ

Let Rð fiÞ and RðgiÞ are regions bounded by fi and gi containing p, respectively. Let RðhiÞ and RðkiÞ are regions
bounded by hi and ki containing ‘, respectively. By definition, Rð fiÞ ¼ fz 2 R

2 : dðz; pÞ � dðz; ki�1Þg and RðgiÞ ¼
fz 2 R2 : dðz; pÞ � dðz; hiÞg. By Lemma 1 the curves fi and gi are convex and differentiable.

Figure 4 illustrates the curves of a point p and a line l such that fi, gi, hi and ki for i ¼ 1; 2; 3; 4. Let C1 and C2 by any
trisectors of p and ‘. The following lemma is almost trivial.

Lemma 2. (1) Rð fiÞ and RðgiÞ are closed convex sets.
(2) hi and ki are x-monotone and convex, that is, they can be expressed as images of convex continuous functions.
(3)

Rðg1Þ � Rðg2Þ � Rðg3Þ � . . . � RðC1Þ � . . . � Rð f3Þ � Rð f2Þ � Rð f1Þ:

Also,

Rðk1Þ � Rðk2Þ � Rðk3Þ � . . . � RðC2Þ � . . . � Rðh3Þ � Rðh2Þ � Rðh1Þ:

The following proposition is easy from basic knowledge of analysis that a bounded convex function uniformly
converges.

Proposition 1. For any given c > 0, the sequences hi and ki uniformly converge to convex continuous functions h
and k in the range �c � x � c, respectively. Also, fi and gi uniformly converge to curves f and g, respectively.
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Fig. 4. The curves fi, gi, hi and ki.
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Then, by definition, f ¼ bisectðp; kÞ and k ¼ bisectð f ; ‘Þ. Thus, the pair f ; k satisfies the conditions of trisector
curves. Similarly, the pair g; h forms trisector curves. Thus, the existence has been proved, and the difficult part is the
uniqueness. By Lemma 2 (3), if we show h � k (accordingly, f � g), we can conclude that the pair ð f ; kÞ are the
unique trisector curves, where h � k means that the two curves are identical.

Thus, in the following, we shall show that h � k. The key idea of the proof is to show that there exists a constant D
such that for any 0 < x0 < D there exists 0 < x0 � x0 such that

hðx0Þ � kðx0Þ � 2ðhðx0Þ � kðx0ÞÞ:

Then, if hðx0Þ 6¼ kðx0Þ, for any given i there is a point x00 � x0 such that hðx00Þ � kðx00Þ � 2iðhðx0Þ � kðx0ÞÞ, and we have
contradiction to the boundedness of h. Thus, hðxÞ ¼ f ðxÞ for 0 � x � D, and we can easily derive h � f from this by
considering the largest value of x that hðxÞ ¼ f ðxÞ holds.

Thus, it suffices to show the existence of x0 � x0 satisfying hðx0Þ � kðx0Þ � 2ðhðx0Þ � kðx0ÞÞ. The proof is based on
three lemmas. For any x0 � 0, let uf ¼ ðx1; f ðx1ÞÞ be the nearest point on f from the point vk ¼ ðx0; kðx0ÞÞ. We
set a constant D such that for any 0 < x0 � D, uf is on the lower boundary curve of Rð f Þ. We further assume that
gðx1Þ � 1, where gðx1Þ is the y-coordinate value of the lower boundary curve of RðgÞ. Such a constant D exists, since
gð0Þ ¼ 2=3.

Lemma 3. If uf ¼ ðx1; f ðx1ÞÞ is the nearest point on f from vk ¼ ðx0; kðx0ÞÞ, x1 < x0 and gðx1Þ � f ðx1Þ �
2ðhðx0Þ � kðx0ÞÞ.

Proof. See Figure 5. Let c ¼ kðx0Þ. Since k is the bisector of f and ‘, dðuf ; vkÞ ¼ c by definition of uf . Consider the
point vh ¼ ðx0; hðx0ÞÞ and ! ¼ hðx0Þ � c. Let us consider the point t ¼ ðx1; f ðx1Þ þ 2!Þ. Then, the distance from vh to t

is less than cþ !, since we have a one-legged path vh ! m! t of length aþ ! if m is the vertex of the parallelogram
muf vkvh. Since h is the bisector curve of ‘ and g, the distance from vh to g is cþ !. Therefore, dðvh; tÞ < cþ ! implies
that t must be below the curve g. Thus, gðx1Þ � f ðx1Þ � 2! ¼ 2ðhðx0Þ � kðx0ÞÞ. �

Lemma 4. Let ug ¼ ðx1; gðx1ÞÞ such that gðx1Þ � 1, and let wh ¼ ðx2; hðx2ÞÞ be the nearest point on h from ug. Then,
gðx1Þ � f ðx1Þ < hðx2Þ � kðx2Þ.

Proof. See Figure 6. We set uf ¼ ðx1; f ðx1ÞÞ, a ¼ dðp; vgÞ and � ¼ gðx1Þ � f ðx1Þ. Since gðx1Þ � 1, b ¼ dðp; uf Þ >
dðp; vgÞ ¼ a. Consider the point s ¼ ðx2; hðx2Þ � �Þ. Since dðp; uf Þ ¼ b > a ¼ dðuf ; sÞ and f is the bisector of p and the
curve k, the point s must be above k. Hence, hðx2Þ � kðx2Þ > �, and we have the lemma. �

Lemma 5. Let x0, x1 and x2 be the values such that the assumptions in both of Lemma 3 and Lemma 4 hold. Then,
0 < x2 � x0.

Proof. We assume that x2 > x0 and derive a contradiction. See Figure 7 (refer to the figure for definitions). We set
ug ¼ ðx1; gðx1ÞÞ, uf ¼ ðx1; f ðx1ÞÞ, vk ¼ ðx0; f ðx0ÞÞ, and wh ¼ ðx2; hðx2ÞÞ. By definition, dðp; ugÞ ¼ dðug; vhÞ ¼ a. We
have a � b since gðx1Þ < 1. Since the distance from the point uf to k is b, c ¼ dðuf ; vkÞ � b. Similarly, the distance d

from wh to ‘ equals the distance from wh to g, and hence it is not more than than a. Thus, we have d � a < b � c.
However, c � d because of convexity of functions, and we have contradiction. �

Now, we have x2 � x0 and hðx2Þ � kðx2Þ � 2ðhðx0Þ � kðx0ÞÞ, which we desired to prove. Theorem has been proved.

6-sector of two points

As a direct application of Theorem 1, we give the following:

Theorem 2 (6-sector of two points). Given two points p ¼ ð0; 1Þ and q ¼ ð0;�1Þ, there exist a set of 5 curves to
give the 6-sector of p and q. Moreover, this is the unique 6-sector that is symmetric with respect to the x-axis.
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Fig. 5. Proof of Lemma 3.
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Note that the existence of k-sector is only known for k ¼ 2; 3; 4 before. Although the existence of 4-sector is trivial
(x-axis and two parabolas), its uniqueness is not known. Figure 8 illustrates 6-sector of a point p and a point q. This
shows symmetricity of 6-sector with respect to the x-axis.

The existence and uniqueness proof naturally leads to the following algorithm for computing the trisector.

Input: point p, line ‘, error "
Output: point sets CðgiÞ, CðhiÞ that approximate distance trisector of a point p and a line ‘ for �n=2 � x �
n=2;�n=2 � y � n=2

Algorithm DrawTrisectorCurves(p; ‘; ")
1. compute bisectðp; lÞ with Cð f1), Cðh1)
2. Cðg1Þ ¼ bisectðp;Cðh1ÞÞ, Cðk1Þ ¼ bisectðCð f1Þ; ‘Þ
3. i ¼ 1

4. while (max0�x�n=2ðhiðxÞ � kiðxÞÞ > ")
5. i iþ 1

6. Cð fiÞ ¼ bisectðp;Cðki�1ÞÞ, CðhiÞ ¼ bisectðCðgi�1Þ; ‘Þ
7. CðgiÞ ¼ bisectðp;CðhiÞÞ, CðkiÞ ¼ bisectðCð fiÞ; ‘Þ
8. return gi; hi.

The difficulty that lies in the algorithm is the computation of the bisectors of curves and point or line. Practically, we
can do it in the pixel grid by raster-scanning the curves.
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Fig. 6. Proof of Lemma 4.
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4. Concluding remarks

The existence and uniqueness of the Zone diagram of n line segments is nontrivial to show1. In higher dimensional
space, we can naturally have trisector surfaces between a point and a plane in the space by considering the rotated
trajectory of trisector curves.

Notes
1 Recently, the existence and uniqueness of the Zone diagram of general objects has been proven in [3], extending the
idea given in this paper and [2].
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