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We give a combinatorial proof and an extension of the identity for the probability density of the cover time of a
random walk on a finite graph obtained in [10] by considering it as the Möbius inversion formula. In addition, we
obtain a similar identity for the cover time of multiple random walks.
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1. Introduction

The cover time of a random walk on a finite graph is the minimal time taken to visit all the vertices of the graph. It
has been extensively studied and many works have been devoted to obtaining the estimation of the expectation of the
cover time. For instance, Feige showed in [6, 7] that the expected cover times of simple random walks for any
connected graphs on N vertices are bounded between the fastest case OðN logNÞ and the slowest one OðN3Þ. These
bounds are optimal in the sense that the former is attained by the complete graph and the latter by the lollipop graph (a
path graph on N

3
vertices which is connected to a complete graph on 2N

3
vertices). On the other hand, Matthews showed

another type of bound in [9] in terms of the minimal and maximal expected hitting times. It is much easier to compute
hitting times than cover times, so this bound is applied to several problems (cf. [4]). Among many works concerning
cover times other than the basic results above, there are few results for distributions of cover times comparing with
expectations (cf. [1, 5]). In the previous paper [10], we gave a representation of the joint distribution of the cover time
and the last visited point as the alternating sum of those of exit times and exit points, which was obtained by using the
spectral theory for a reversible random walk. In the present paper, we give a simple proof of this representation by
regarding it as Möbius inversion. In addition, this approach gives us the following: we succeed in dropping the
condition of the reversibility of the random walk in [10] and in obtaining a similar representation for cover times of
multiple random walks which is discussed in [2, 3].

Let G ¼ ðVðGÞ;EðGÞÞ be a finite undirected and connected graph with the set of vertices VðGÞ and the set of edges
EðGÞ. We simply write V ¼ VðGÞ and set the cardinality of V as jV j ¼ N. We assume N � 2 throughout this paper. For
each subset W of V , the subgraph of G induced by W is the graph with the set of vertices W and the set of edges
ffx; yg 2 EðGÞ; x; y 2 Wg, and NGðWÞ ¼ fv 2 Wc; fv;wg 2 EðGÞ for some w 2 Wg is the set of neighbors of W in G

where Wc ¼ V nW .
We fix a root r 2 V and mainly treat a sequence of real numbers ð�aÞa2V , a real valued function defined on V , which

has the property below:
(A) For every v 2 V there exists a walk from r to v in G, denoted by v1 � � � vn where v1 ¼ r and vn ¼ v, such
that �vi � �v for all i ¼ 1; . . . ; n.

Here a walk in G is a sequence a1 � � � an of vertices such that fai; aiþ1g 2 EðGÞ for all i 2 f1; . . . ; n� 1g.
The following example shows that this property (A) actually holds for cover times.

Example 1. Let ðwtÞt¼0;1;... be a discrete time random walk on G starting from r 2 V ; when the random walk is at
v 2 V , the next position is chosen from the neighbors of v according to any given transition probability. The sequence
of the first hitting time to v 2 V , defined as

�v ¼ inffs � 0;ws ¼ vg;

has the property (A) (if �’s are finite). Then maxa2V �a is merely the time taken by the random walk to cover all the
vertices of G, and for a subset � � V , minb=2� �b ¼ inffs � 0;ws 2 �cg is the time at which wt exits from �. The
quantity maxa2V �a is called the cover time of G and minb=2� �b the first exit time from �.
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Let C be the totality of vertex sets of connected induced subgraphs of G, that is, C ¼ f� � V ;

the subgraph of G induced by � is connectedg. Formally, C includes the emptyset. We set Cr ¼ f� 2 C; � 3 rg [
f;g and regard it as a partially ordered set with inclusion. The following main theorem is obtained from the Möbius
inversion formula for Cr.

Theorem 1. Let ð�aÞa2V be a sequence of real numbers having the property (A) for a root r 2 V and set
Dr ¼ f� 2 Cr; � [ NGð�Þ ¼ Vg n fVg. Then,

’ max
a2V

�a

� �
¼
X
�2Dr

ð�1ÞN�j�jþ1’ min
b=2�

�b

� �
for any function ’ : R ! R.

As a corollary, we obtain an identity for the joint distribution of the cover time and the last visited point through the
expression as the Laplace transform of this distribution by taking ’ as a suitable function. A random walk on a state
space X with a transition probability ðpðx; yÞÞx;y2X is said to be irreducible if, for any states x; y 2 X, there exists a
sequence z1 � � � zn with z1 ¼ x and zn ¼ y such that pðzi; zi þ 1Þ > 0 for i ¼ 1; . . . ; n� 1. In order to obtain Dr from an
irreducible transition probability ðpðx; yÞÞx;y2X , we construct a graph G as VðGÞ ¼ X and EðGÞ ¼ ffx; yg; pðx; yÞ >
0 or pðy; xÞ > 0g. Here we remark that such a graph is connected since the transition probability is irreducible,
that is, for any vertices x; y 2 X, there exists a walk v1 � � � vn with v1 ¼ x and vn ¼ y such that pðvi; viþ1Þ > 0 for
i ¼ 1; . . . ; n� 1.

Theorem 2. Let ðwtÞt¼0;1;... be an irreducible random walk on a finite state space X starting from r. We denote the
cover time of X by CX defined as CX ¼ maxa2X �a and the first exit time from a subset � � X by T� defined as
T� ¼ minb=2� �b, where �v is the first hitting time to v 2 X. Then,

PrðCX ¼ t;wCX
¼ yÞ ¼

X
�2DrnDy

ð�1ÞjXj�j�jþ1PrðT� ¼ t;wT� ¼ yÞ

for each y 2 X, where Pr is the law of the random walk starting from r.

We remark that Theorem 2 generalizes the main theorem in [10] in the sence that the reversibility of random walks
required in [10] is dropped in Theorem 2. In addition it holds for continuous time random walks under the obvious
modification although it is stated only for discrete time ones here.

In order to show that the expression in Theorem 1 is useful in calculating cover times, we give the following
examples of Dr for some graphs.

Example 2.
(i) If G is a path with end-vertices v1 and v2, then it holds that

Dr ¼
ffv2gcg; r ¼ v1,

ffv1gcg; r ¼ v2,

ffv1gc; fv2gc; fv1; v2gcg; otherwise.

8<:
In general, if G is a tree, then

Dr ¼
fWc;W � L;W 6¼ ;g; r =2 L,

fWc;W � L;W 63 r;W 6¼ ;g; r 2 L,

�
where L ¼ fv 2 V ; jNGðfvgÞj ¼ 1g is the set of leaves of G.

(ii) If G is a cycle, then

Dr ¼ ffvgc; v 2 V ; v 6¼ rg [ ffv;wgc; fv;wg 2 EðGÞ; v 6¼ r;w 6¼ rg:

(iii) If r is adjacent to any other vertices in G, then Dr ¼ f� ( V; � 3 rg.

By using Example 2, let us show the expectation of the cover time of a random walk on a cycle. We denote the
set of vertices by X ¼ V ¼ f0; . . . ;N � 1g and the set of edges by EðGÞ ¼ ffi; iþ 1g; i ¼ 0; . . . ;N � 2g [ ffN � 1; 0gg.
Fix 0 < p < 1 and we define the transition probability ðpðx; yÞÞx;y2X of the random walk by

pðx; yÞ ¼
p; y ¼ xþ 1 mod N,

1� p; y ¼ x� 1 mod N,

0; otherwise.

8<:
From Theorem 2 and (ii) in Example 2, we have

E0½CX� ¼
XN�1

n¼1

E0½Tfngc � �
XN�2

n¼1

E0½Tfn;nþ1gc �;
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where E0 is the expectation with respect to P0. We mention that E0½Tfngc � and E0½Tfn;nþ1gc � are easily obtained since they
satisfy some recurrence equation from the strong Markov property (cf. [8]). If p ¼ 1

2
, then we have

E0½CX� ¼
XN�1

n¼1

nðN � nÞ �
XN�2

n¼1

nðN � 1� nÞ ¼
NðN � 1Þ

2
:

If p 6¼ 1
2
, then we have

E0½CX� ¼
XN�1

n¼1

1

p� q
n�

Nðpnq�n � 1Þ
pNq�N � 1

� �
�
XN�2

n¼1

1

p� q
n�

ðN � 1Þðpnq�n � 1Þ
pN�1q�ðN�1Þ � 1

� �

¼ �
1

ðpN � qNÞðpN�1 � qN�1Þ
NðpqÞ

N�1
2 �

pN � qN

ðp� qÞ

� �2

þ
Nðp

N�1
2 � q

N�1
2 Þ

ðp� qÞðp
N�1
2 þ q

N�1
2 Þ

ð1:1Þ

where q ¼ 1� p. From (1.1), we can verify that E0½CX� ! NðN�1Þ
2

as p ! 1
2
and E0½CX� � N

jp�qj as N ! 1, where
f ðNÞ � gðNÞ means that limN!1

f ðNÞ
gðNÞ ¼ 1.

2. Equivalence conditions for the property (A)

Without loss of generality, we may assume �r ¼ 0. In this section, we provide two kinds of conditions equivalent to
the property (A). Before stating these, we give the following notations:

. For a tree T with a fixed root x, we define a partial order �T by v �T v0 on T if v 2 VðxPv0Þ, where xPv0 is the
unique path between x and v0 in T .

. Let ‘ : EðGÞ ! ½0;1Þ be a non-negative weight on EðGÞ. We define a pseudo distance with this weight ‘ in G

by

d‘ðv; v0Þ ¼ min
vPv0�G

X
e2EðvPv0Þ

‘ðeÞ ð2:1Þ

for each v; v0 2 V .
A subgraph G0 of G is said to be a spanning subgraph if VðG0Þ ¼ VðGÞ. In particular, if a spanning subgraph is a tree,

then it is called a spanning tree. We claim the proposition below.

Proposition 1. The following assertions are equivalent for a sequence ð�aÞa2V of real numbers on a connected graph
G with a fixed root r:
(i) The sequence ð�aÞa2V satisfies the property (A) for the root r;
(ii) There exists a spanning tree T of G with the root r such that �v � �v0 if v �T v0;
(iii) There exists a non-negative weight ‘ on EðGÞ such that �a ¼ d‘ðr; aÞ, where d‘ðr; �Þ is a pseudo distance from r

defined by ‘.

Proof. Firstly, under the assumption that ð�aÞa2V satisfies the property (A), we will construct a spanning tree T

satisfying the condition in (ii) in a similar way to the depth-first search. Starting from the root r, we trace the edges of G
to a vertex of the neighbors of the current vertex, which has not yet been visited and whose value is not less than that of
the current vertex. Whenever such a neighbor of the current vertex exists, we repeat this procedure. If there is no such
vertex, we go back along the edge by which the current vertex was first reached; we repeat this tracing back until such a
neighbor of the current vertex appears. Once such a neighbor appears, we pursue the previous procedure. We repeat
these procedures. If there exist no such neighbors and the current vertex is r, then the traversal is terminated. Clearly the
graph formed by all the traversed edges is a tree T of G. In addition, we can easily check that �v � �v0 if v �T v0 for the
partial order defined by this tree T and the root r. Since the property (A) guarantees such a T is the spanning subgraph
of G, it is proved that the condition (i) implies (ii).

Secondly, we assume that a spanning tree T of G with the root r satisfies the condition (ii). Let us assign a
non-negative weight as

‘ðfv; v0gÞ ¼
�v0 � �v; if fv; v0g 2 EðTÞ and v �T v0,

max
a2V

�a þ 1; otherwise,

(
for all fv; v0g 2 EðGÞ. Then, it is clear that �a ¼ d‘ðr; aÞ holds for all a 2 V .

Finally, let us assume that ð�aÞa2V is expressed as �a ¼ d‘ðr; aÞ for some non-negative weight ‘. Then there exists a
path rePPv between r and v in G such that �v ¼

P
e2Eðr ~PPvÞ ‘ðeÞ. For each v0 2 VðrePPvÞ, let rePPv0 be a path between r and v0

in rePPv. Then,
�v ¼

X
e2Eðr ~PPvÞ

‘ðeÞ �
X

e2Eðr ~PPv0Þ

‘ðeÞ � min
rPv0�G

X
e2EðrPv0Þ

‘ðeÞ ¼ �v0 :

We have thus proved the proposition. �
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3. Möbius inversion

Let us recall the Möbius inversion formula (cf. [11]). Let P be a finite partially ordered set with a partial order 	 and
f a function on P. If a function g is given by

gðxÞ ¼
X
y	x

f ðyÞ

for each x 2 P, then f can be expressed as

f ðyÞ ¼
X
x	y

gðxÞ�Pðx; yÞ

for all y 2 P, where �P is called the Möbius function of P and �P is given recursively by

�Pðx; yÞ ¼

1; x ¼ y,

�
X
x	z
y

�Pðx; zÞ ¼ �
X
x
z	y

�Pðz; yÞ; x 
 y,

0; otherwise,

8>><>>: ð3:1Þ

for x; y 2 P. For example, let P be the power set of V with inclusion as a partial order. Then we have

�PðA;BÞ ¼
ð�1ÞjBj�jAj A � B,

0; otherwise,

�
ð3:2Þ

which is nothing but the principle of inclusion-exclusion. We remark that for any x; y 2 P the restriction to the interval
½x; y� ¼ fz 2 P; x 	 z 	 yg of the Möbius function of P equals the Möbius function of ½x; y�, that is, �P j½x;y� ¼ �½x;y�.

First, we define a function f which may be applied to the proof of Theorem 1.

Proposition 2. Let ð�aÞa2V be a sequence of real numbers and P be a family of subsets of V with inclusion as a
partial order which satisfies the following two conditions:
(i) ; 2 P;
(ii) fv0 2 V; �v0 � �vg 2 P for all v 2 V .

For a function ’ : R ! R, we define the function f on P as

f ðAÞ ¼

’ min
b2V

�b

� �
; A ¼ ;,

’ min
b=2A

�b

� �
� ’ max

a2A
�a

� �� �
�ðAÞ; A 6¼ ;;A 6¼ V ,

0; A ¼ V ,

8>>>>><>>>>>:
where

�ðAÞ ¼
1; min

b=2A
�b > max

a2A
�a,

0; otherwise,

(

and gð�Þ ¼
P

A�� f ðAÞ for � 2 P. Then we have

gð�Þ ¼
’ min

b=2�
�b

� �
; � 6¼ V ,

’ max
a2V

�a

� �
; � ¼ V ,

8>>><>>>:
for all � 2 P.

Proof. For our convenience, let us set V ¼ f1; . . . ; ng such that �1 � � � � � �n. The claim is trivially valid for �1 ¼ �n,
so we may assume that �1 < �n. We put ePP ¼ f½i�; 1 � i < n; �i < �iþ1g;

where ½i� ¼ f1; . . . ; ig. Note that ePP � P by the the assumption of (ii) and �ð�Þ ¼ 0 if � =2 ePP. Moreover, we
see that

f ð½i�Þ ¼ ’ min
b=2½i�

�b

� �
� ’ max

a2½i�
�a

� �� �
�ð½i�Þ

¼ ’ð�iþ1Þ � ’ð�iÞ
for ½i� 2 ePP. Therefore
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gð�Þ ¼
X
A��

f ðAÞ ¼ ’ð�1Þ þ
X

i;½i���;½i�2ePPð’ð�iþ1Þ � ’ð�iÞÞ

for � 2 P, where the summation of the last term is understood to be 0 when ½i� 6� � for all ½i� 2 ePP. Note that ½i� 6� �

for all ½i� 2 ePP if and only if fi 2 V ; �i ¼ �1g 6� �, that is, there exists an i 2 V such that i =2 � and �i ¼ �1. Hence, for
� 2 P with � 6� fi 2 V ; �i ¼ �1g, we have

gð�Þ ¼ ’ð�1Þ ¼ ’ min
b=2�

�b

� �
:

For � 2 P with � � fi 2 V; �i ¼ �1g, put i0 ¼ max fi 2 V ; ½i� � �; ½i� 2 ePPg. Then, ½i� � � for all ½i� 2 ePP such that
i � i0. Thus

gð�Þ ¼ ’ð�1Þ þ
X

i;½i���;½i�2 ~PP

ð’ð�iþ1Þ � ’ð�iÞÞ ¼ ’ð�i0þ1Þ:

Here the last equality follows from the assumption of (ii). Clearly if � ¼ V , then �i0þ1 ¼ maxa2V �a and hence

gð�Þ ¼ ’ð�i0þ1Þ ¼ ’ max
a2V

�a

� �
:

If � 6¼ V and � � fi 2 V; �i ¼ �1g, then we see that

min
b=2�

�b ¼ min
b=2½i0�

�b ¼ �i0þ1

and then we have

gð�Þ ¼ ’ð�i0þ1Þ ¼ ’ min
b=2�

�b

� �
:

�

If ð�aÞa2V satisfies the property (A) for a root r 2 V , the subgraphs induced by fv0 2 V; �v0 � �vg are connected for all
v 2 V , that is, fv0 2 V ; �v0 � �vg 2 Cr. Next let us express the Möbius function for Cr. Recall that Cr is a partially
ordered set with inclusion.

Proposition 3. Let �Cr
be the Möbius function for Cr and A;B 2 Cr. If A 6¼ ;,

�Cr
ðA;BÞ ¼ ð�1ÞjBj�jAj; A � B � A [ NGðAÞ,

0; otherwise.

�
If A ¼ ;,

�Cr
ðA;BÞ ¼

1; B ¼ ;,
�1; B ¼ frg,
0; otherwise.

8<:
Proof. The statement is trivial for A 6� B from (3.1); we give a proof for A � B using (3.1).

Case 1. Let us assume A ¼ ;. The claim is obvious when B ¼ ; or B ¼ frg. For the other case, we have

�Cr
ð;;BÞ ¼ �

X
;(��B

�Cr
ð�;BÞ ¼ � �Cr

ðfrg;BÞ þ
X

frg(��B

�Cr
ð�;BÞ

 !
¼ 0:

Here the first equality and the last equality follow from the second line of (3.1).
Case 2. Let us assume A 6¼ ; and A � B � A [ NGðAÞ. In this case, the interval ½A;B� ¼ f� 2 Cr;A � � � Bg is

equal to f� � V ;A � � � Bg. This partially ordered subset of Cr is isomorphic to the power set of B n A with
inclusion as a partial order, say P ¼ fS; S � B n Ag: The bijection ’ : ½A;B� ! P given by ’ð�Þ ¼ � n A is the
isomorphism since � � �0 if and only if ’ð�Þ � ’ð�0Þ. Thus we have

�Cr
ðA;BÞ ¼ �½A;B�ðA;BÞ ¼ �Pð;;B n AÞ ¼ ð�1ÞjBnAj ¼ ð�1ÞjBj�jAj:

Case 3. Let us assume A 6¼ ; and A � B 6� A [ NGðAÞ. Fix any A 6¼ ; and we will prove that �PðA;BÞ ¼ 0 for all B
such that A � B 6� A [ NGðAÞ by induction on the cardinality of jB n Aj. We set

B ¼ fB 2 Cr;A � B 6� A [ NGðAÞg
¼ fB 2 Cr;A � B; 9v 2 B such that v =2 A [ NGðAÞg: ð3:3Þ

We remark that jB n Aj � 2 for all B 2 B, which is easily verified from (3.3). For each B 2 B, we divide the summation
as follows:
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�Cr
ðA;BÞ ¼ �

X
A��(B

�Cr
ðA;�Þ

¼ �
X

A��(B;�� ~BB

þ
X

A��(B;�6� ~BB

0@ 1A�Cr
ðA;�Þ; ð3:4Þ

where eBB ¼ B \ ðA [ NGðAÞÞ ¼ A [ ðB \ NGðAÞÞ:

We see that A � eBB ( B and eBB 2 Cr from the definition of eBB and (3.3). So the first summation of (3.4) is 0 as in
Case 1; X

A��(B;�� ~BB

�Cr
ðA;�Þ ¼

X
A��� ~BB

�Cr
ðA;�Þ ¼ �Cr

ðA; eBBÞ þ X
A��( ~BB

�Cr
ðA;�Þ ¼ 0:

On the other hand, the second summation of (3.4) is obviously 0 for the base case jB n Aj ¼ 2 because there is no
� 2 Cr such that A � � ( B and � 6� eBB. For the case jB n Aj � 3, using the induction hypothesis shows that

�Cr
ðA;�Þ ¼ 0 for all � 2 Cr such that A � � ( B and � 6� eBB: ð3:5Þ

In order to use the induction hypothesis, we check � 2 B and j� n Aj < jB n Aj. From � 6� eBB, there exists a v 2 �

such that v =2 eBB ¼ A [ ðB \ NGðAÞÞ. Moreover, such a v satisfies

v =2 A [ ðB \ NGðAÞÞ [ ðBc \ NGðAÞÞ ¼ A [ NGðAÞ

because v 2 � � B. Hence � 2 B. It is clear that j� n Aj < jB n Aj from A � � ( B. Thus, we can apply the induction
hypothesis to all � such that A � � ( B and � 6� eBB, and obtain (3.5). �

Proof of Theorem 1. From the Möbius inversion formula on P ¼ Cr, the function f given in Proposition 2 is expressed
as f ðAÞ ¼

P
��A gð�Þ�Pð�;AÞ for all A 2 Cr. Especially, putting A ¼ V , we have

0 ¼ f ðVÞ ¼
X
��V

gð�Þ�Cr
ð�;VÞ

¼ ’ max
a2V

�a

� �
þ
X
�(V

’ min
b=2�

�b

� �
�Cr

ð�;VÞ;

and

�Cr
ð�;VÞ ¼ ð�1ÞN�j�j; if � [ NGð�Þ ¼ V ,

0; otherwise,

�
from Proposition 3. Thus we have completed the proof of Theorem 1. �

4. Application to cover times for single and multiple random walks

4.1 Single random walk

We prove Theorem 2 in this subsection.

Proof of Theorem 2. We consider an irreducible random walk ðwtÞt¼0;1;... starting from r 2 X. As is seen in Example 1,
we put �a as the first hitting time to a 2 X. Since the state space is finite and the random walk is irreducible, �a is finite
almost surely for all a 2 X. So it is enough to consider the case where �’s are finite. Recall that maxa2X �a ¼ CX is the
cover time and minb=2� �b ¼ T� is the first exit time from � � X. Setting jXj ¼ N, the identity

’ðCXÞ ¼
X
�2Dr

ð�1ÞN�j�jþ1’ðT�Þ ð4:1Þ

holds for any function ’ : R ! R from Theorem 1. Then, for any fixed � > 0 and b 2 R, we take the function ’ as

’ðzÞ ¼ ’bðzÞ ¼ e��z�bðzÞ

for z 2 R, where � is Kronecker’s delta, that is, �bðbÞ ¼ 1 and �bðzÞ ¼ 0 if z 6¼ b. Therefore the identity

e��CX��y ðCXÞ ¼
X
�2Dr

ð�1ÞN�j�jþ1e��T���y ðT�Þ

holds by taking b ¼ �y for y 2 X. We can replace
P

�2Dr
with

P
�2DrnDy

since ��y ðT�Þ ¼ 0 if � 3 y. Thus we get the
identity in the form of the Laplace transform of the joint distribution of the cover time and the last visited point by
taking the expectation of the both sides. Noting that ��y ðCXÞ ¼ 1 if and only if wCX

¼ y and that ��y ðT�Þ ¼ 1 if and only
if wT� ¼ y, we have
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Er½e��CX ;wCX
¼ y� ¼

X
�2DrnDy

ð�1ÞN�j�jþ1Er½e��T�;wT� ¼ y�;

where Er is the expectation with respect to Pr. This completes the proof. �

4.2 Multiple random walks

We consider k-multiple random walks ðwð1Þ
t ; . . . ;wðkÞ

t Þ on a finite state space X with jXj ¼ N starting from ðr1; . . . ; rkÞ,
where each ðwðiÞ

t Þt¼0;1;... is a random walk on X. We do not assume that they are independent; we only assume that each
random walk is irreducible. Let us construct a connected graph G as VðGÞ ¼ X and EðGÞ ¼

Sk
i¼1 EðGðiÞÞ, where GðiÞ is a

graph constructed by wðiÞ
t as in Section 4.1. Let �ðiÞ

a be the first hitting time to a 2 V of wðiÞ
t , R ¼ fr1; . . . ; rkg and

�R
a ¼ mini¼1;...;k �

ðiÞ
a ¼ infft � 0; 9i 2 f1; . . . ; kg s.t. wðiÞ

t ¼ ag. Hence the cover time of multiple random walks
ðwð1Þ

t ; . . . ;wðkÞ
t Þ can be defined by CR

X ¼ maxa2V �
R
a . Let us set

CR ¼
[k
i¼1

�ðiÞ; �ðiÞ 2 Cri ;�
ðiÞ 6¼ ;

( )
[ f;g;

where Cri is given by GðiÞ, that is, Cri ¼ f� � V ; the subgraph of GðiÞ induced by � is connected;� 3 rig [ f;g. If the
subgraph induced by R is connected, we see that ð�R

a Þa2V has the property (A) for any r ¼ ri. Then Theorem 1 can be
applied for ð�R

a Þa2V . On the other hand, if the subgraph induced by R is disconnected, ð�R
a Þa2V may not have the property

(A) for some r ¼ ri. However, for each v 2 V , the subset fv0 2 V ; �R
v0 � �R

v g must be given as the union of �ðiÞ 2 Cri for
some i. Thus we have that Proposition 2 holds for the ð�R

a Þa2V and P ¼ CR. We also obtain the Möbius function �CR
for

CR in the same way as in the proof of Proposition 3: If A 6¼ ;,

�CR
ðA;BÞ ¼ ð�1ÞjBj�jAj; A � B � A [ NGðAÞ,

0; otherwise,

�
for all B 2 CR; if A ¼ ;,

�CR
ðA;BÞ ¼

1; B ¼ ;,
�1; B ¼ R,

0; otherwise,

8<:
for all B 2 CR. Consequently, we obtain the following theorem for the ð�R

a Þa2V .

Theorem 3. Set DR ¼ f� 2 CR; � [ NGð�Þ ¼ Vg n f;;Vg. Then, we have

’ðCR
XÞ ¼ ’ max

a2V
�R
a

� �
¼
X
�2DR

ð�1ÞN�j�jþ1’ min
b=2�

�R
b

� �
ð4:2Þ

¼
X
�2DR

ð�1ÞN�j�jþ1’ min
i¼1;...;k

T ðiÞ
�

� �
for any function ’ : R ! R, where T ðiÞ

� ¼ minb=2� �ðiÞ
b is the first exit time of wðiÞ from �. In addition, we have

PRðCR
X ¼ tÞ ¼

X
�2DR

ð�1ÞN�j�jþ1PR min
i¼1;...;k

T ðiÞ
� ¼ t

� �
;

where PR is the law of the random walks.

We remark that the expression (4.2) in Theorem 3 generalizes Theorem 1. The following are examples
demonstrating theorems stated above.

Example 3. We consider two random walks starting from ðr1; r2Þ such that the graph constructed by the random
walks is a path graph G of length N � 1. We denote the set of vertices by VðGÞ ¼ f1; . . . ;Ng, the set of edges by
EðGÞ ¼ ffi; iþ 1g; i ¼ 1; . . . ;N � 1g, and let ½i; j� ¼ fi; iþ 1; . . . ; jg.
(i) If r1 ¼ n and r2 ¼ nþ 1 for some n 2 f1; . . . ;N � 1g, we see that Cfn;nþ1g ¼ f½i; j�; 1 � i � n; nþ 1 � j � Ng

and

Dfn;nþ1g ¼
f½1;N � 1�g; n ¼ 1,

f½2;N�g; n ¼ N � 1,

f½1;N � 1�; ½2;N�; ½2;N � 1�g; otherwise.

8<:
Thus, if 2 � n � N � 1, we have

’ C
fn;nþ1g
X

� �
¼ ’ min

i¼1;2
T ðiÞ
½1;N�1�

� �
þ ’ min

i¼1;2
T ðiÞ
½2;N�

� �
� ’ min

i¼1;2
T ðiÞ
½2;N�1�

� �
:
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(ii) If r1 ¼ 1 and r2 ¼ N, we see that Cf1;Ng ¼ f½1; i� [ ½j;N�; 1 � i; j � Ng and

Df1;Ng ¼ ffngc; 2 � n � N � 1g [ ffn; nþ 1gc; 2 � n � N � 2g:

Thus we have

’ Cf1;Ng
X

� �
¼
XN�1

n¼2

’ min
i¼1;2

T ðiÞ
fngc

� �
�
XN�2

n¼2

’ min
i¼1;2

T ðiÞ
fn;nþ1gc

� �

¼
XN�1

n¼2

’ minf�ð1Þ
n ; �ðNÞ

n g
� �

�
XN�2

n¼2

’ minf�ð1Þ
n ; �ðNÞ

nþ1g
� �

:
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