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We study a probabilistic model for single connected cycles on an undirected planar graph for which the degree
of every vertex is restricted to two or three. By using a diagrammatical method to solve a free fermion model, we
derive the exact expression of the partition function as well as marginal probabilities. We compare the exact results
for the marginals with the approximations obtained with Loopy Belief Propagation allowing us to evaluate the
efficacy of the latter.
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1. Introduction

Recently, probabilistic analysis of constraint satisfaction problems has been performed using concepts of spin glass
theory and phase transitions [1–3]. Solving these problems exactly requires an exponential order of computational time.
Marinari, Semerjian and Van Kerrebroeck have studied the problem of finding long cycles in random graphs by treating
them as a constraint satisfaction problems [4, 5]. They introduced a probabilistic model identifying the long cycles and
employed loopy belief propagation (LBP) and Markov chain Monte Carlo to analyze associated problems.

One of the solvable probabilistic models is a vertex model with a free fermion condition on the undirected planar
graph [6, 7]. It is referred to as a free fermion model. Such a vertex model has been investigated also on the honeycomb
lattice and the exact expression of the free energy in the thermodynamic limit has been derived [8, 9]. The partition
function of the free fermion model on a square lattice can be expressed in terms of a summation of cycles on the
undirected planar graph and can be calculated analytically by using a diagrammatical method [10, 11]. The justification
of the diagrammatical method for free fermion models on any planar graph has been given in Refs. [12–14]. The same
results for the partition function of the free fermion model on any planar graphs can be derived by using Grassmann
variables [15, 16]. It has been suggested that the partition function can be reduced also to some well-known integrable
representations of quantum field theory in terms of Hamiltonian matrices [18–20]. These methods have allowed to
calculate the partition function exactly both from the point of view of computational theory and statistical learning
theory [17, 21, 22].

By using the diagrammatical method [12–14], the partition functions of the free fermion models, including some
two-dimensional Ising models on planar graphs, are expressed in terms of contributions of all the simple cycles. The
practical algorithms to calculate the exact value of the free energy can be reduced to the computations of the
determinants of the matrices of random walks. The justification for the diagrammatical method has been done only for
planar graphs. Using the diagrammatical method, the probabilistic models can be reduced to the free fermion models if
they satisfy also some additional conditions which are valid for all the states at each vertex. Some of the additional
conditions are referred to as free fermion conditions. Free fermion conditions have to be imposed on all the states at
every vertex if they have a degree of at least four. However, all the states at every vertex with degree two or three do
not have to satisfy such additional conditions to derive the exact expression of the free energy. By restricting the graphs
to the planar graphs with the degree being two or three, the probabilistic model formulated to find long cycles in graphs
in Ref. [4] can be solved exactly by means of the diagrammatical method. It is interesting to derive the exact
expressions of the partition functions for solvable probabilistic models to find long cycles in graphs and compare the
exact results with the approximate ones obtained by using LBP.

In the present paper, we introduce an undirected planar graph for which the degree of every vertex is restricted to two
or three. On the undirected planar graph, we consider a probabilistic model for single connected cycles. By using a
diagrammatical method to solve free fermion models, we derive the exact expression of the partition function as well as
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marginal probabilities. In Sec. 2, we define the probabilistic model on the undirected planar graph. In Sec. 3, we
rewrite the partition function of the probabilistic model by the diagrammatical representation and reduce it to a
determinant by using the diagrammatical method given in [10–13]. By using the expression of the partition function,
we derive the marginal probability that a fixed edge is included by one of the cycles. In Sec. 4, the exact expression for
the marginal probabilities are derived by using the diagrammatical method and the discrete Fourier transformation on
an infinite honeycomb lattice. In Sec. 5, we derive the approximate value of the marginal probability that a fixed edge is
included by one of the cycles by using the LBP on an infinite honeycomb lattice. In Sec. 6, we give some numerical
results for finite planar graphs. In Sec. 7, we analyze the asymptotic behaviour of the marginal probabilities near a
special value of an external parameter for finite planar graphs. In Sec. 8, we give some concluding remarks.

2. Cycle Graph on Undirected Planar Graph

In this section, we define a probabilistic model for identifying cycles on an undirected planar graph. In order to
obtain exact results by means of the diagrammatical method given in [11–14], we restrict the degree of every vertex to
two or three.

We consider an undirected planar graph G ¼ ðV ;EÞ consisting of N vertices without closed one-edge loops and
multiple edges. Here V � fi j i ¼ 1; 2; � � � ;Ng is a set of all vertices and E � ffi; jg j 1 � i < j � Ng is a set of edges.
Note that no pair of edges can intersect with each other on a planar graph. A set of neighbouring vertices of the vertex i

is denoted by @i. In this paper, we restrict j@ij ¼ 2; 3 and denote the set of vertices i for which the degree j@ij is two in
the graph G ¼ ðV ;EÞ by @V � fi j j@ij ¼ 2g.

In the free fermion model, we distinguish two kinds of states of each edge. One is represented by a solid line segment
and is referred to as a solid edge. Another one is represented by a dashed line segment and is referred to as a dashed
edge. We consider the configuration of a vertex to be determined by the solid edges connected to the vertex, and the
configuration of the system is determined by the set of vertex configurations for all the vertices. We only allow for such
vertex configurations for which there exist none or an even number of solid edges connected to every neighbouring
vertex. The random variable associated to each edge fi; jg 2 E is denoted by Sij, which takes 1 for the solid edge and 0
for the dashed edge, respectively. The set of all the random variables fSij j fi; jg 2 Eg is denoted by the vector S. The
state variable of edge fi; jg 2 E is denoted by sij. All the possible states of the vertices of the graph given in Fig. 1 are
shown in Figs. 2 and 3. Some possible configurations are shown in Fig. 4.

The probability distribution for every configuration s � fsij j fi; jg 2 Eg is expressed as follows, as a function of an
external parameter u,

PrfS ¼ s j ug �
1

ZðuÞ

Y
fi; jg2E

usij

 ! Y
i2V

�
X
k2@i

sik; 0

 !
þ �

X
k2@i

sik; 2

 ! ! !
ð1Þ

where �ða; bÞ ¼ �a;b is the Kronecker delta and ZðuÞ is the partition function defined by

ZðuÞ �
X
s

Y
fi; jg2E

usij

 ! Y
i2V

�
X
k2@i

sik; 0

 !
þ �

X
k2@i

sik; 2

 ! ! !
ð2Þ

The summation
P

s �
P

fskl¼0;1jfk;lg2Eg is taken with respect to all the edge variables for edges in the set E. In the limit of
u ! þ1, only configurations in which all vertices have two solid edges appear in this probabilistic model. In the case
of u ! 0, only the configuration with no solid edges appears.

One quantity we focus on in particular is the marginal expressing the probability with which an edge is included by
any of the cycles,
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Fig. 1. Graph consisting of vertices with degree 2 or 3 and the present probabilistic model on the graph. (a) Graph consisting of
vertices with degree 2 or 3. Solid circles and thin line segments denote vertices and edges, respectively. (b) Probabilistic model
for cycles of the graph given in (a). Random variables Sijð¼ 0; 1Þ are assigned to all edges. Each triangular denotes an interaction
among the three edges it includes. Each thick line segment denotes an interaction between the two edges it connects.
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PrfSij ¼ 1 j ug �
X
s

�ðsij; 1Þ PrfS ¼ s j ug ¼
X
s

sij PrfS ¼ s j ug: ð3Þ

By differentiating lnðZðuÞÞ with respect to u, we obtainX
fi; jg2E

PrfSij ¼ 1 j ug ¼ u
@

@u
ln ZðuÞ: ð4Þ

The latter equality is derived by differentiating both sides of Eq. (2) with respect to u and by using Eq. (3).

3. Partition Function for Free Fermion Model on Planar Graph

In this section, we give the exact expression of partition functions for the probabilistic model defined in the previous
section. The explicit expression can be derived in a similar way as the scheme presented in [12, 13]. We briefly
summarize the derivation in the present section.

The partition function ZðuÞ can be represented as
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Fig. 2. All possible states of vertices with degree 2 on the graph given in Fig. 1.
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Fig. 3. All possible states of vertices with degree 3 on the graph given in Fig. 1.
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Fig. 4. Examples of the possible configurations on the graph given in Fig. 1. The numerators ð
Q

fi; jg2E u
sij Þð
Q

i2V ð�ð
P

k2@i sik; 0Þ þ
�ð
P

k2@i sik; 2ÞÞÞ in Eq. (1) for the configurations (a)–(f) are (a) u6, (b) u10, (c) u16, (d) u12, (e) u20 and (f) u14, respectively.
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ZðuÞ ¼ 1þ fthe sum of all those single connected configurations

on the undirected planar graph, such that every vertex

is connected to none or two solid edgesg: ð5Þ

A configuration in Eq. (5) denotes the product of the factors u for edges fi; jg in it. The single connected configurations
are those including only cycles of solid edges which are pairwise connected at the vertices, without allowing for
multiple solid edges. Multiple solid edges are the states in which a pair of neighbouring vertices are connected by two
or more solid edges. Some examples of configurations including multiple solid edges are shown in Figs. 5(a) and 6(a).
The multiple solid edges appear in f14; 15g of Fig. 5(a), and in f10; 14g and f14; 15g of Fig. 6(a), respectively. These
configurations are forbidden in the set of all the single connected configurations in Eq. (5).

Eq. (5) can be regarded as

ZðuÞ ¼ 1þ fthe sum of all the products of cycles of solid edges

which are pairwise connected at the vertices;

without allowing for multiple solid edgesg: ð6Þ

We remark that all the possible configurations do not include any vertex state which have more than two solid edge
states in the present graph. If we walk in one direction along any of the cycles of solid edges of all the possible
configurations until we return to the initial vertex, no other vertices but the initial and terminal vertex will be
encountered twice or more. Such cycles of solid edges are referred to as simple cycles. Thus the possible configurations
consist only of simple cycles.

Now we consider all the cycles that allow for multiple solid edges. Each vertex i connected to a double solid edge is
divided into two vertices i0 and i00. A double solid edge fi; jg can be replaced by two kinds of sets, ffi0; j0g; fi00; j00gg and
ffi0; j00g; fi00; j0gg. In this replacement, there may occur crossings in a cycle of solid edges. A cycle of solid edges is
characterized by the product of the following factors:
(1) +1 and �1 depending on whether the parity of the number of crossings of edges is even or odd.
(2) the product of u for each solid edge.
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Fig. 5. An example of configurations including one double solid edge and their replacements. A double solid edge f14; 15g in (a)
can be replaced by two kinds of sets, ff140; 150g; f1400; 1500gg and ff140; 1500g; f1400; 150gg as shown in (b) and (c). The contribution
for configuration (a) is replaced by the sum of contributions (b) and (c). We see that there occurs one crossing in (c). The
configuration in (c) consists of two cycles of solid edges in (d) and (e) and the contribution is the product of the contributions of
(d) and (e). The contribution for configuration (a) is derived as shown in (f) and is equal to zero because a cycle of solid edges
includes an additional factor ð�1Þr if there are r crossings in the cycle.
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Thus, a cycle of solid edges includes an additional factor ð�1Þr if there are r crossings in the cycle. Some examples of
configurations including double solid edges are shown in Figs. 5 and 6. In the configuration of Fig. 5(a), we have one
double solid edge in f14; 15g. The vertices 14 and 15 in the double solid edge f14; 15g are divided into vertices 140 and
1400, and 150 and 1500, respectively. One of the choices of the double solid edge on f14; 15g is the pair
ff140; 150g; f1400; 1500gg as shown in Fig. 5(b), and the other one is the pair ff140; 1500g; f1400; 150gg as shown in Fig. 5(c).
We regard the configuration including two distinct cycles of solid edges in Fig. 5(b) as a product of two configurations
including one cycle of solid edges as shown in Figs. 5(d) and (e). The contribution is given by the product of the
contributions of Figs. 5(d) and (e). The contribution for configuration (a) is derived as shown in Fig. 5(f) and is equal to
zero because the contribution of the cycle in Fig. 5(b) includes an additional factor �1 if there is one crossing in the
cycle. Also for the example of Fig. 6(a), an argument similar to the above statements for the case of Fig. 5(a) holds.
The contribution for Fig. 6(a) is rewritten as shown in Fig. 6(h) and is equal to zero because each contribution for
Figs. 6(c) and (d) includes an additional factor ð�1Þr if there are r crossings in the cycle. Generally we have the
following equality:

fevery connected cycle that includes multiple solid edgesg ¼ 0: ð7Þ

Here the connected cycle is the configuration consisting of one cycle of solid edges. This cancellation of configurations
expressed by the above equality (7), is due to the introduction of the additional factor ð�1Þr when r crossings occur in
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Fig. 6. An example of configurations including two double solid edges and their replacements. The contribution for configuration
(a) is replaced by the sum of contributions (b)–(e). We see that there occur some crossings in (c) and (e). Both configurations in
(b) and (e) consists of two cycles of solid edges in (f) and (g) and each contribution is the product of the contributions of (f) and
(g). The contribution for configuration (a) is derived as shown in (h) and is equal to zero because a cycle of solid edges includes
an additional factor ð�1Þr if there are r crossings in the cycle.
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cycles of solid edges [12]. By using Eq. (7), we obtain

fthe sum of all the products of connected cycles

that include multiple solid edgesg ¼ 0: ð8Þ

From these contributions, we have the following equality:

expðfthe sum of all the connected cycles

that allow for multiple solid edgesgÞ

¼
Xþ1

n¼0

1

n!
ðfthe sum of all the connected cycles

that allow for multiple solid edgesgÞn

¼ 1þ fthe sum of all the products of connected cycles

that allow for multiple solid edgesg: ð9Þ

By substituting Eq. (8) to Eq. (9) and by comparing it with Eq. (6), we derive the following equality:

ZðuÞ ¼ expðfthe sum of all the connected cycles

that allow for multiple solid edgesgÞ: ð10Þ

Now we associate a direction to an undirected solid edge from one of the vertices i to the other jð2 @iÞ and call such a
directed edge a step. The number of possible steps starting with vertex i is j@ij. These steps are labeled as ði; �Þ
(� ¼ 1; 2; � � � ; j@ij), where i is the initial vertex of the step. If the initial vertex of the step ð j; �0Þ is equal to the terminal
vertex of the step ði; �Þ, step ð j; �0Þ can follow ði; �Þ. By using these steps, we consider a random walk via these steps. A
random walk via the steps returning to the initial vertex is called a directed cycle. A directed cycle is a cycle graph with
all the solid edges being oriented in the same direction. Each undirected cycle of solid edges corresponds to two
directed cycles consisting of the same solid edges, to which we associate the two opposite directions. The two directed
cycles give the same contribution to the partition function. Eq. (10) can now be rewritten as

ZðuÞ2 ¼ expðfthe sum of all the directed and connected cycles

consisting of steps and allowing multiple stepsgÞ: ð11Þ

Now we introduce an N
P

i2V j@ij � N
P

i2V j@ij matrix � which indexes a random walk and has an element
h j; �0j�ji; �i for every pair of steps ði; �Þ and ð j; �0Þ. Its matrix elements are defined by

h j; �0j�ji; �i ¼ u�ð j; �0 j i; �Þ; ð12Þ

if the step ð j; �0Þ can follow the step ði; �Þ, and it is zero otherwise.
To make the explicit calculations of the following section more understandable, we further discuss the matrix

elements (12) by considering an undirected planar graph G which is embedded in the xy-plane. We denote the position
vector of the vertex i by Ri. Moreover we denote the position vector of the initial vertex of the step ði; �Þ by Ri;�. If
ð j; �0Þ can follow ði; �Þ, the initial vertex of the step ð j; �0Þ is uniquely determined as the terminal vertex of ði; �Þ and
the step ði; �Þ corresponds to the vector Rj � Ri. Hence Ri;� is defined by

Ri;� � Rj � Ri ðð j; �0Þ can follow ði; �ÞÞ: ð13Þ

We define that the value of �ð j; �0 j i; �Þ is zero if Ri;� ¼ �Rj;�0 . When Ri;� 6¼ �Rj;�0 , the value of �ð j; �0 j i; �Þ is �1

if either of the following conditions (1) and (2) is satisfied, and the value is +1 otherwise.
(1) The vector Rj;�0 whose y component is negative has a direction rotated clockwise less than � from the vector Ri;�

whose y component is not negative [23].
(2) The vector Rj;�0 whose y component is not negative has a direction rotated counter-clockwise less than � from the

vector Ri;� whose y component is negative [23].
In terms of the matrix �, we have the following equality:

fthe sum of all the directed cycles consisting of n stepsg ¼ �
1

n
Tr�n: ð14Þ

By substituting Eq. (14) to Eq. (11), we can express the partition function as

ZðuÞ2 ¼ exp �
Xþ1

n¼1

1

n
Tr�n

 !
¼ detðI ��Þ: ð15Þ

Here I is the N
P

i2V j@ij � N
P

i2V j@ij identity matrix. The detailed proof has been given in Secs. 2 and 3 in [11, 12].
Note that � is only dependent on the topological properties of the graph and can be defined intrinsically without any
reference to an embedding of the corresponding graph in R

2.
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We see that the free energy F � � lnðZðuÞÞ of the present system is expressed as

F ¼ �
1

2
lnðdetðI ��ÞÞ: ð16Þ

By substituting Eq. (4) to Eq. (15), we have the following equality:

1

jEj

X
fi; jg2E

PrfSij ¼ 1 j ug ¼
1

ujEj
@

@u

1

2
lnðdetðI ��ÞÞ

� �
¼

1

2ujEj
Tr ðI ��Þ�1 @

@u
ðI ��Þ

� �
: ð17Þ

Note that both the expressions (16) and (17) are independent of any particular embedding, just as � is.
In the present section, we have given the derivation of the partition function ZðuÞ in Eq. (2) by using the

diagrammatical method. We remark again that the probabilistic model is defined on a planar graph such that the degree
of every vertex is either two or three. By differentiating the partition function with respect to lnðuÞ, we can obtain the
value of the average of the marginal probabilities of the random variable Sij considering all the edges fi; jgð2 EÞ, i.e.
1
jEj
P

fi; jg2E PrfSij ¼ 1 j ug.

4. Expression for the Honeycomb Lattice

We consider a regular graph as the one given in Fig. 7(a). The regular graph has periodic boundary conditions
for the horizontal and the vertical directions in the plane. All vertices of the regular graph can be divided into
two kinds of subgraphs A and B as shown in Fig. 7(b). Moreover, the regular graph in Fig. 7(b) is isomorphic
to the one in Fig. 7(c). In Fig. 7(c), the vertices are labeled by ðx; y; nÞ (x ¼ 1; 2; . . . ;K; y ¼ 1; 2; . . . ;L; n ¼ A, B),
where x and y denote the positions along the (horizontal) x-direction and the (vertical) y-direction, respectively,
and n denotes the species of the subgraphs. The total number of vertices is 2KL, and the total number of unit
cells is KL.

There are six steps whose initial vertices are in the same unit cell. The steps are labeled by �ð¼ 1; 2; . . . ; 6Þ. The way
we label them is explicitly presented in Fig. 8. Due to translational symmetry for the edges, if a step ðð1; 1Þ; �Þ is the
one from ð1; 1; nÞ to ðx0; y0; n0Þ, we also have a step ððx; yÞ; �Þ from ðx; y; nÞ to ðx0 þ x� 1; y0 þ y� 1; n0Þ. In this way, all
steps can be labeled by ððx; yÞ; �Þ (x ¼ 1; 2; . . . ;K; y ¼ 1; 2; . . . ;L). The position vector Rðx;yÞ;� of the initial vertex of
step ððx; yÞ; �Þ can be expressed as

Rðx;yÞ;� ¼ ð2x� ��;1 � ��;2 � ��;3Þex þ yey;

ðx ¼ 1; 2; . . . ;K; y ¼ 1; 2; . . . ; LÞ; ð18Þ

where ex and ey are the unit vectors in the x-direction and the y-direction, respectively. The vector R� of Fig. 8, are
explicitly given by
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Fig. 7. An example of regular graphs.

(a) (b)

1

23

5
4

6

Fig. 8. Number of each step for the regular graph in Fig. 7.
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R1 ¼ ex � ey; R2 ¼ ex; R3 ¼ �ex;

R4 ¼ ex; R5 ¼ �ex þ ey; R6 ¼ �ex:

�
ð19Þ

Pairs of � and �0 for which the value of ��;�0 is �1 are shown in Fig. 9. The value of ��;�0 for the other pairs is zero or
unity.

Now we consider wave number vectors

Qp;q ¼
�p

K
ex þ

2�q

L
ey; ð20Þ

and introduce a 6KL� 6KL matrix � defined by

hx; y; �j�jp; q; �0i �
1ffiffiffiffiffiffi
KL

p e�iRðx;yÞ;��Qp;q��;�0 : ð21Þ

We have the inverse matrix ��1 as follows:

hp; q; �0j��1jx; y; �i �
1ffiffiffiffiffiffi
KL

p eiQp;q�Rðx;yÞ;� ��;�0 : ð22Þ

We introduce a discrete Fourier transformation of I �� as follows:

I � b�� � ��1ðI ��Þ� ð23Þ

I �� � �ðI � b��Þ��1 ð24Þ

When the step ððx0; y0Þ; �0Þ follows the step ððx; yÞ; �Þ, the vector rðx;yÞ;� for the step ððx; yÞ; �Þ is defined by

r� � Rðx0;y0Þ;�0 � Rð1;1Þ;�: ð25Þ

If the step ððx0; y0Þ; �0Þ follows the step ðð1; 1Þ; �Þ, the step ððx0 þ x� 1; y0 þ y� 1Þ; �0Þ also follows the step ððx; yÞ; �Þ
because of the translational symmetry for edges. When the step ððx0 þ x� 1; y0 þ y� 1Þ; �0Þ follows the step ððx; yÞ; �Þ,
we introduce the vector rðx;yÞ;� for the step ððx; yÞ; �Þ which is defined by

rðx;yÞ;� ¼ Rðx0þx�1;y0þy�1Þ;�0 � Rðx;yÞ;�: ð26Þ

The vector rðx;yÞ;� does not depends on ðx; yÞ and we can replace the vector rðx;yÞ;� by a notation r� in the present case.
The matrix I � b�� can be rewritten as

hp; q; �jI � b��jp0; q0; �0i ¼
1

KL

XK
x¼1

XL
y¼1

XK
x0¼1

XL
y0¼1

hx; y; �jI ��jx0; y0; �0i

� eiQp;q�r�0 þiðQp;q�Qp0 ;q0 Þ�Rðx0 ;y0 Þ;�0

¼
1

KL
f��;�0 � u��;�0eiQp;q�r�0 g

XK
x0¼1

XL
y0¼1

eiðQp;q�Qp0 ;q0 Þ�Rðx0 ;y0 Þ;�0

¼ �p;p0�q;q0 f��;�0 � u��;�0eiQp;q�r�0 g: ð27Þ

By substituting Eq. (27) to Eq. (15), we obtain

ZðuÞ2 ¼
YK
p¼1

YL
q¼1

det I �A
2�p

K
;
2�q

L

� �� �
ð28Þ

h�jA
2�p

K
;
2�q

L

� �
j�0i � u��;�0eiQp;q�r�0 : ð29Þ

such that,

(a) (b)

µ'=1
µ=4 µ=1 µ'=4

Fig. 9. Combination of steps that give �ð j; �0 j i; �Þ ¼ �1 when the step ð j; �0Þ follows the step ði; �Þ for the regular graph of
Fig. 7.
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Að�; �Þ ¼

0 0 0 �uei�=2 0 ue�i�=2

0 0 0 uei�=2 ue�ið�=2��Þ 0

0 0 0 0 ue�ið�=2��Þ ue�i�=2

�ueið�=2��Þ uei�=2 0 0 0 0

0 uei�=2 ue�i�=2 0 0 0

ueið�=2��Þ 0 ue�i�=2 0 0 0

0BBBBBBBBB@

1CCCCCCCCCA
ð30Þ

The free energy f ðuÞ per unit cell in the thermodynamic limit is given as follows:

f ðuÞ � � lim
K!þ1

lim
L!þ1

1

KL
lnðZðuÞÞ

¼ �
1

8�2

Z þ�

��

Z þ�

��

lnðdetðI �Að�; �ÞÞÞd�d�

¼ �
1

8�2

Z þ�

��

Z þ�

��

ln

�
1þ 3u4 � 2u2ð1� u2Þ cosð�Þ

� 4u2ð1� u2Þ cos
�

2

� �
cos 2� þ

�

2

� ��
d�d�: ð31Þ

This result is consistent with the one given in Ref. [8].
Due to the translational symmetry and the periodic boundary condition of the system considered in the present

section, the marginal probability PrfSij ¼ 1 j ug does not depend on the edge fi; jg. By using Eq. (17) and Eq. (31), the
marginal probability PrfSij ¼ 1 j ug can be derived as follows:

PrfSij ¼ 1 j ug ¼ �
u

3

� �
@

@u
f ðuÞ

¼
1

6�2

Z þ�

��

Z þ�

��

3u4 � u2ð1� 2u2Þ cosð�Þ � 2u2ð1� 2u2Þ cosð�
2
Þ cosð2� þ �

2
Þ

1þ 3u4 � 2u2ð1� u2Þ cosð�Þ � 4u2ð1� u2Þ cosð�
2
Þ cosð2� þ �

2
Þ
d�d�: ð32Þ

The integrals in Eqs. (31) and (32) are improper integrals when u ¼ 1=
ffiffiffi
3

p
. The numerator of integrand in Eq. (32)

satisfies the following inequalities:

1þ 3u4 � 2u2ð1� u2Þ cosð�Þ � 4u2ð1� u2Þ cos
�

2

� �
cos 2� þ

�

2

� �
¼ 1þ 3u4 � 2u2ð1� u2Þðcosð�Þ þ cosð�Þ þ cosð2� þ �ÞÞ

� ð1� 3u2Þ2 ð0 < u � 1Þ
ð1þ u2Þ2 ðu � 1Þ

�
: ð33Þ

The denominator 1þ 3u4 � 2u2ð1� u2Þ cosð�Þ � 4u2ð1� u2Þ cosð�
2
Þ cosð2� þ �

2
Þ of the integrand in Eq. (32) does not

vanish for any real numbers of � and � except in the case of u ¼ 1=
ffiffiffi
3

p
. The denominator of the integrand is equal to

zero only at � ¼ � ¼ 0 in the case of u ¼ 1=
ffiffiffi
3

p
and the integrand diverges only at that point. Thus, the integral in

Eq. (32) can be regarded as an improper integral when u ¼ 1=
ffiffiffi
3

p
.

Though the values of PrfSij ¼ 1 j ug take finite values, its derivative @
@u PrfSij ¼ 1 j ug diverges for u ¼ 1=

ffiffiffi
3

p
. It

means that a phase transition occurs at u ¼ 1=
ffiffiffi
3

p
. Moreover we see that limu!þ1 PrfSij ¼ 1 j ug ¼ 2=3. The marginal

probability PrfSij ¼ 1 j ug of Eq. (32) is shown in Fig. 10.

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2
u

Pr{S   =1}ij

Fig. 10. Marginal Probability PrfSij ¼ 1 j ug for the regular graph in Fig. 7. The red line is an exact result obtained by using the
diagrammatical method. The blue line is an approximate result obtained by using the loopy belief propagation (LBP).
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5. Loopy Belief Propagation

In this section, we give an approximate calculation of the marginal probability PrfSij ¼ 1 j ug for the probabilistic
model given in Sec. 2 defined on the honeycomb lattice obtained by means of LBP [24–26]. The graphical
representation of the probabilistic model of Eq. (1) is given in Fig. 11(a).

In LBP, the marginal probability PrfSij; Sik; Silg for the set of edges of which vertex i is an ending vertex and belongs
to the set Vn@V , such that j@ij ¼ 3, is approximated by the following expression

PrfSij ¼ s; Sik ¼ s0; Sil ¼ s00g

’
u
1
2
ðsþs0þs00Þð�sþs0þs00;0 þ �sþs0þs00;2Þmj!fi; jgðsÞmk!fi;kgðs0Þml!fi;lgðs00ÞX

s¼0;1

X
s0¼0;1

X
s00¼0;1

u
1
2
ðsþs0þs00Þð�sþs0þs00;0 þ �sþs0þs00 ;2Þmj!fi; jgðsÞmk!fi;kgðs0Þml!fi;lgðs00Þ

: ð34Þ

Similarly, the marginal probability PrfSijg for edges fi; jg of which i and j belong to the set Vn@V is approximated by

PrfSij ¼ sg ’
mi!fi; jgðsÞmj!fi; jgðsÞP

s¼0;1 mi!fi; jgðsÞmj!fi; jgðsÞ
: ð35Þ

Fig. 11(b) and (c) show the corresponding graphical representation of Eqs. (34) and (35), respectively.
Demanding consistency between all Eqs. (34) and (35), i.e.,

PrfSij ¼ sg ¼
X
s0¼0;1

X
s00¼0;1

PrfSij ¼ s; Sik ¼ s0; Sil ¼ s00g; ð36Þ

we obtain the following update rule for the messages fmi!fi; jgðsÞ; s ¼ 0; 1g:

mi!fi; jgðsÞ ¼
Zij

Zi

X
s0¼0;1

X
s00¼0;1

u
1
2
ðsþs0þs00Þð�sþs0þs00;0 þ �sþs0þs00 ;2Þmk!fi;kgðs0Þml!fi;lgðs00Þ: ð37Þ

Eq. (37) can be expressed in terms of the graphical representations in Fig. 11(d). If we now define a new normalized
message

�i!fi; jgðsÞ �
mi!fi; jgðsÞP

s¼0;1 mi!fi; jgðsÞ
; ð38Þ

we can rewrite the edge marginals of Eq. (35) as following

PrfSij ¼ sg ’
�i!fi; jgðsÞ�j!fi; jgðsÞP

s¼0;1 �i!fi; jgðsÞ�j!fi; jgðsÞ
: ð39Þ

By substituting Eq. (37) to the right-hand side of Eq. (38), we find the following update rule for the newly defined
messages

(a)

(c)

(b)

i

j

k

l
{i,l}{i,j}

{i,k}

{i,j}

j

i

(d)

i

k

l
{i,l}{i,j}

{i,k}

Fig. 11. Loopy belief propagation (LBP) of regular graphs. (a) Probabilistic model for cycles on the honeycomb lattice. (b)
Graphical Representation for the marginal probability PrfSij; Sik; Silg in LBP. (c) Graphical Representation for the marginal
probability PrfSijg in LBP. (d) Graphical Representation for the message passing rule in LBP.
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�i!fi; jgðsÞ ¼

X
s0¼0;1

X
s00¼0;1

u
1
2
ðsþs0þs00Þð�sþs0þs00 ;0 þ �sþs0þs00 ;2Þ�k!fi;kgðs0Þ�l!fi;lgðs00ÞX

s¼0;1

X
s0¼0;1

X
s00¼0;1

u
1
2
ðsþs0þs00Þð�sþs0þs00;0 þ �sþs0þs00;2Þ�k!fi;kgðs0Þ�l!fi;lgðs00Þ

ði 2 Vn@VÞ: ð40Þ

Eqs. (39) and (40) are illustrated in terms of the graphical representations in Fig. 11(b) and (d), respectively.
When the vertex i belongs to the set @V , the degree j@ij of vertex i is two. In this case, Eq. (40) becomes

�i!fi; jgðsÞ ¼

X
s0¼0;1

u
1
2
ðsþs0Þð�sþs0 ;0 þ �sþs0 ;2Þ�k!fi;kgðs0ÞX

s¼0;1

X
s0¼0;1

u
1
2
ðsþs0Þð�sþs0 ;0 þ �sþs0 ;2Þ�k!fi;kgðs0Þ

ði 2 @VÞ: ð41Þ

Due to the periodic boundary condition and the translational symmetry of the honeycomb lattice, the messages
�i!fi; jgðsÞ are the same for all edges fi; jg. Moreover, as the state variables sij can take on only two values, they can be
parametrized by a single message. We choose to denote the messages as � when s ¼ 1. Thus, Eqs. (39) and (40) can be
rewritten as follows:

PrfSij ¼ 1 j ug ’
�2

ð1� �Þ2 þ �2
; ð42Þ

� ¼
2u�ð1� �Þ

ð1� �Þ2 þ u�2 þ 2u�ð1� �Þ
ð43Þ

By resolving Eq. (43) for � , we obtain

� ¼
ð1� 2uÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð2u� 1Þ

p

1� u
: ð44Þ

The messages � thus have a singularity for u ¼ 1, where it takes on the value limu!1 � ¼ 1=2.
By substituting Eq. (43) into Eq. (42), we obtain

PrfSij ¼ 1 j ug ’
0 ðu < 1

2
Þ

2u� 1

3u� 1
ðu > 1

2
Þ

8<: : ð45Þ

The marginal probability PrfSij ¼ 1 j ug of Eq. (45) is shown in Fig. 10. In the result obtained by means of LBP, we see
that a phase transition occurs at u ¼ 1=2, which is earlier than the exact result u ¼ 1=

ffiffiffi
3

p
. Instead, the LBP result for

limu!þ1 PrfSij ¼ 1 j ug ¼ 2=3 coincides with the exact limit.

6. Numerical Experiments for Finite Planar Graphs

In this section, we give some numerical results for the finite planar graphs shown in Fig. 12, which have no periodic
boundary conditions. We check the difference between the results for 1

jEj
P

fi; jg2E PrfSij ¼ 1 j ug obtained by means of
the diagrammatical method and LBP for each planar graph. Note that the equalities (16) and (17) are valid for finite
planar graphs.

In the exact diagrammatical method given in Sec. 3, we have to generate the matrix � defined by Eq. (12) for each
planar graph. For the finite planar graph of Fig. 12(a), we show all the elements of the matrix � explicitly in Fig. 13.
The exact results for 1

jEj
P

fi; jg2E PrfSij ¼ 1 j ug by the diagrammatical method are obtained by using Eq. (17). The LBP
approximation for the average of the marginals 1

jEj
P

fi; jg2E PrfSij ¼ 1 j ug are obtained from the value of the messages
(40) at their fixed point according to Eq. (39). The obtained results of 1

jEj
P

fi; jg2E PrfSij ¼ 1 j ug for each regular graph
of Figs. 12(a)–(c) are shown in Fig. 14. The red curves are the exact results obtained by using the diagrammatical
method, whereas the blue curves are the LBP results.

In Figs. 15 and 16, we explicitly show the size dependence of 1
jEj
P

fi; jg2E PrfSij ¼ 1 j ug according to the
diagrammatical method and LBP, respectively. We see that the results converge systematically to the one for the
infinite planar graph given in Fig. 7. It is interesting to note that u ¼ 1 signals a crossover point for both methods. For
u < 1, the edge marginals PrfSij ¼ 1 j ug are, on average, lower for smaller graphs. Instead, for u > 1, the results for
1
jEj
P

fi; jg2E PrfSij ¼ 1 j ug on finite graphs overestimate the case of the infinite graph, and more so for smaller graphs.
More specifically, there exist large differences between the LBP results and the exact ones obtained using the
diagrammatical method in the region for u near the transition point of the present model on the infinite planar
graph, i.e., u ¼ 1=2 and u ¼ 1=

ffiffiffi
3

p
, respectively. For all the infinite and finite graphs presented in Figs. 7 and 12,

1
jEj
P

fi; jg2E PrfSij ¼ 1 j ug is always equal to 1/2 for u ¼ 1.
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Figs. 14(a)–(c) present comparative results according to the two methods for the finite graphs of Fig. 12. It is clear
that for u > 1 LBP delivers good approximate values with respect to the exact solution for 1

jEj
P

fi; jg2E PrfSij ¼ 1 j ug.
However, for lower values, i.e., u < 1, we find LBP sometimes overestimates, sometimes underestimates the exact
results.

To understand the above behaviour better, we present in Figs. 17(a)–(b) the full distribution of PrfSij ¼ 1 j ug for
some value of u < 1 and u > 1, respectively. The step function character is more explicit for larger systems as these are
less prone to finite size effects. While for u < 1 none of the edges have a marginal larger than the typical value, for
u > 1 some do. From Fig. 18 it is clear that the LBP estimation of the marginals of the outer edges which have at least
one ending vertex of degree 2, overestimates the overall expected typical value.

7. Perturbative Analysis near u ¼ 1

In this section, we discuss the asymptotic behaviour of PrfSij ¼ 1 j ug near u ¼ 1 such that lnðuÞ ¼ 0. The regions
0 < u < 1 and u > 1 correspond to lnðuÞ < 0 and lnðuÞ > 0, respectively. Since we have uSij ¼ expðSij lnðuÞÞ, lnðuÞ can
be regarded as a chemical potential conjugated to the number of solid edges. In this section, we give some perturbative
calculations in the case of infinitesimal lnðuÞ.

First we consider a dual graph G� ¼ ðV�;E�Þ for each finite planar graph G ¼ ðV ;EÞ. Here V� and E� are the sets of
vertices and edges in the dual graph G�, respectively. The number of elements of the set E�, i.e. jE�j, is equal to the
number of edges jEj of the original graph G ¼ ðV ;EÞ. If we denote the set of vertices for which the degree is two in the
graph G ¼ ðV ;EÞ by @V , we now introduce an additional set of edges @E� for which we demand that j@E�j ¼ j@V j. For
example, the dual graph of the planar graph in Fig. 12(b) is shown as Fig. 19(a). If both fi; jg and f j; kg belong to E� but
fi; kg does not belong to E�, we regard fi; kg as an additional edge. In the dual graph G� ¼ ðV�;E�Þ, there exist some

(c)

(1,3,A)

(1,3,B)

(1,2,A)

(1,2,B)

(3,1,B)(1,1,B)

(2,3,A)

(2,3,B)
(2,2,A)

(2,2,B)

(2,1,A)

(2,1,B)

(3,3,A)

(3,2,A)

(3,1,A)
(3,2,B)

(1,4,A)

(1,4,B)

(2,4,A)

(2,4,B)

(3,4,A)

(1,5,A)

(1,5,B)

(2,5,A)

(2,5,B)

(3,5,A)

(3,3,B)

(3,4,B)

(3,5,B)

(4,3,A)

(4,2,A)

(4,1,A)

(4,4,A)

(4,5,A)

(4,1,B)

(4,2,B)

(4,3,B)

(4,4,B)

(4,5,B)

(5,2,A)

(5,1,A)

(5,4,A)

(5,3,A)

(5,5,A)

(5,1,B)

(5,2,B)

(5,3,B)

(5,4,B)

(1,6,A)

(1,6,B)

(2,6,A)

(2,6,B)

(3,6,A)

(1,7,A)

(1,7,B)

(2,7,A)

(2,7,B)

(3,7,A)

(3,6,B)

(3,7,B)

(4,6,A)

(4,7,A)

(4,6,B)

(4,7,B)

(5,6,A)

(5,7,A)

(5,6,B)

(5,5,B)

(6,3,A)

(6,2,A)

(6,1,A)

(6,4,A)

(6,5,A)

(6,1,B)

(6,2,B)

(6,3,B)

(6,4,B)

(6,5,B)

(7,2,A)

(7,1,A)

(7,4,A)

(7,3,A)

(7,5,A)

(7,1,B)

(7,2,B)

(7,3,B)

(7,4,B)

(5,7,B)

(6,6,A)

(6,7,A)

(6,6,B)

(6,7,B)

(7,6,A)

(7,7,A)

(7,6,B)

(7,5,B)

(b)

(1,3,A)

(1,3,B)

(1,2,A)

(1,2,B)

(3,1,B)(1,1,B)

(2,3,A)

(2,3,B)
(2,2,A)

(2,2,B)
(2,1,A)

(2,1,B)

(3,3,A)

(3,2,A)

(3,1,A)
(3,2,B)

(1,4,A)

(1,4,B)

(2,4,A)

(2,4,B)

(3,4,A)

(1,5,A)

(1,5,B)

(2,5,A)

(2,5,B)

(3,5,A)

(3,3,B)

(3,4,B)

(3,5,B)

(4,3,A)

(4,2,A)

(4,1,A)

(4,4,A)

(4,5,A)

(4,1,B)

(4,2,B)

(4,3,B)

(4,4,B)

(4,5,B)

(5,2,A)

(5,1,A)

(5,4,A)

(5,3,A)

(5,5,A)

(5,1,B)

(5,2,B)

(5,3,B)

(5,4,B)

(a)
(1,3,A)

(1,3,B)

(1,2,A)

(1,2,B)

(3,1,B)(1,1,B)

(2,3,A)

(2,3,B)

(2,2,A)

(2,2,B)

(2,1,A)

(2,1,B)

(3,3,A)

(3,2,A)

(3,1,A)
(3,2,B)

Fig. 12. Finite planar graphs. (a) K ¼ L ¼ 3, jVj ¼ 16, jEj ¼ 19. (b) K ¼ L ¼ 5, jVj ¼ 48, jEj ¼ 63. (c) K ¼ L ¼ 7, jVj ¼ 96,
jEj ¼ 131.
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vertices of degree one. The set of all the vertices of which the degree is one is denoted by @V� � fi j j@ij ¼ 1g. We
introduce additional edges fi; jg for some pairs of vertices, i and j, belonging to @V� in the dual graph G� ¼ ðV�;E�Þ.
The set of such additional edges are denoted by the notation @E�. The set @E� has been chosen such that the graph
ðV�;E� þ @E�Þ is also a planar graph and j@ij ¼ 3 for any vertices i belonging to @V�. For example, we can introduce
@E� for the planar dual graph G� ¼ ðV�;E�Þ in Fig. 19(a) as shown in Fig. 19(b).

We assign a spin variable �ið¼ 	1Þ to each vertex i 2 V� in the dual graph G�. In terms of the dual graph G� and the
set of additional edges @E�, the partition function ZðuÞ in Eq. (2) are rewritten as follows:

ZðuÞ ¼
1

2

X
�

Y
fi; jg2E�

u�
1
2
ðlnðuÞÞð�i�j�1Þ

 ! Y
fi; jg2@E�

��i�j ;1

 !
ð46Þ

The summation
P

� �
P

f�i¼	1ji2V�g is taken with respect to all the spin variables for vertices in the set V�.
Since we have ��i�j;1 ¼ 1

2
ð1� �i�jÞ and u�

1
2
ð�i�j�1Þ ¼ coshð1

2
lnðuÞÞ � sinhð1

2
lnðuÞÞ�i�j, the logarithm of partition

function ZðuÞ can be given as a series of tanh2ð1
2
lnðuÞÞ:

ln ZðuÞ ¼ ln
1

2

� �
þ jE�j ln cosh

1

2
u

� �� �
þ j@E�j ln

1

2

� �
þ ln

X
�

Y
fi; jg2E�

1� tanh
1

2
lnðuÞ

� �
�i�j

� � ! Y
fi; jg2@E�

ð1þ �i�jÞ

 !( )

¼ ln
1

2

� �
þ jE�j ln cosh

1

2
u

� �� �
þ j@E�j ln

1

2

� �
þ ln 1þ j@E�j tanh2

1

2
lnðuÞ

� �
� jE�j tanh3

1

2
lnðuÞ

� �
þ � � �

� �
: ð47Þ

Here we use the equality �2
i ¼ 1 and

P
�i¼	1 �i ¼ 0 in the derivation of the second equality. We derive the series

expansion of 1
jEj
P

fi; jg2E PrfSij ¼ 1 j ug with respect to tanh2ð1
2
lnðuÞÞ for infinitesimal lnðuÞ as follows:

1

jEj

X
fi; jg2E

PrfSij ¼ 1 j ug ¼
1

u

� �
@

@u
lnZðuÞ

¼
1

2
þ

1

2
þ

j@V j
jEj

� �
tanh

1

2
lnðuÞ

� �
þO tanh2

1

2
lnðuÞ

� �� �
ðu ! 1Þ: ð48Þ
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Fig. 13. Matrix � of the finite regular graph in Fig. 12(a).
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Fig. 14. Average of marginal probabilities over all the edges, 1
jEj
P

fi; jg2E PrfSij ¼ 1 j ug, for each regular graph of Fig. 12. The red
line is an exact result obtained by using the diagrammatical method. The blue line is an approximate result obtained by using the
loopy belief propagation (LBP). (a) K ¼ L ¼ 3, jVj ¼ 16, jEj ¼ 19. (b) K ¼ L ¼ 5, jVj ¼ 48, jEj ¼ 63. (c) K ¼ L ¼ 7,
jV j ¼ 96, jEj ¼ 131.
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Fig. 15. Average of marginal probabilities over all the edges, 1
jEj
P

fi; jg2E PrfSij ¼ 1 j ug, for each regular graph in Fig. 12. All lines
are exact results obtained by using the diagrammatical method of Sec. 3. The black line is the result for the infinite planar graph
in Fig. 7. The red, blue and green lines are for the finite planar graphs given in Figs. 12(a), 12(b) and 12(c), respectively.
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Fig. 17. Integrated distribution of the marginals PrfSij ¼ 1 j ug for finite size honeycomb lattices of length
K ¼ L ¼ 10; 20; 40; 80; 160 for (a) u ¼ 1:25 and (b) u ¼ 0:75.
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Fig. 16. Average of marginal probabilities over all the edges, 1
jEj
P

fi; jg2E PrfSij ¼ 1 j ug, for each regular graph in Fig. 12. All lines
are the approximate results obtained by using the LBP of Sec. 5. The black line is the result for the infinite planar graph given in
Fig. 7. The red, blue and green lines are for the finite planar graphs in Figs. 12(a), 12(b) and 12(c), respectively.
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Fig. 18. Integrated distribution of PrfSij ¼ 1 j ug considering either all edges, only the inner edges, or only the outer edges for the
honeycomb lattice of K ¼ L ¼ 80 for u ¼ 1:25.
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For u ¼ 1, the average of the edge marginals 1
jEj
P

fi; jg2E PrfSij ¼ 1 j ug is equal to 1/2. In the case of infinitesimally
positive lnðuÞ, the average of marginals 1

jEj
P

fi; jg2E PrfSij ¼ 1 j ug is larger than 1/2 and increases when the ratio
j@V j=jEj increases. In the case of the infinitesimally negative lnðuÞ, it is smaller than 1/2 and decreases when the ratio
j@V j=jEj increases.

Secondly, if we consider the behaviour of the LBP at u ¼ 1. Eqs. (40) and (41) have the solution �i!fi; jgð0Þ ¼
�i!fi; jgð1Þ ¼ 1

2
(fi; jg 2 E), which can be confirmed explicitly by substituting the solution to the right-hand sides of

Eqs. (40) and (41). Thus, the marginal probability PrfSij ¼ 1 j ug at every edge fi; jg is equal to 1/2 for u ¼ 1.
Expanding �i!fi; jgðsÞ in powers of lnðuÞ in Eqs. (40) and (41) and retaining only the first order terms, we obtain

�i!fi; jgð1Þ ¼
1

2
þ

1

8
lnðuÞ þ OððlnðuÞÞ2Þ ði 2 Vn@VÞ

�i!fi; jgð1Þ ¼
1

2
þ

3

8
lnðuÞ þ OððlnðuÞÞ2Þ ði 2 @V ; j 2 @V ; @infjg � Vn@VÞ

�i!fi; jgð1Þ ¼
1

2
þ

5

8
lnðuÞ þ OððlnðuÞÞ2Þ ði 2 @V ; j 2 @V ; @infjg � @VÞ

�i!fi; jgð1Þ ¼
1

2
þ

7

8
lnðuÞ þ OððlnðuÞÞ2Þ ði 2 @V ; j 2 Vn@V ; @infjg � @VÞ

8>>>>>>>>>><>>>>>>>>>>:
ð49Þ

for u ! 1 and infinitesimally small lnðuÞ. In the above derivations, we introduce ��i!fi; jgðsÞ � �i!fi; jgðsÞ � 1
2
and

substitute �i!fi; jgðsÞ � 1
2
þ ��i!fi; jgðsÞ into Eqs. (40) and (41). In the above calculations, we consider infinitesimal

deviations of order lnðuÞ of the messages ��i!fi; jgðsÞ.
By substituting the above asymptotic forms of Eq. (49) to Eq. (39), we obtain the following asymptotic behavior

for the marginal probability PrfSij ¼ 1 j ug:

PrfSij ¼ 1 j ug ¼
1

2
þ ��i!fi; jgð1Þ þ ��j!fi; jgð1Þ þ � � �

¼

1

2
þ

1

4
lnðuÞ þ OððlnðuÞÞ2Þ ði 2 Vn@V ; j 2 Vn@VÞ

1

2
þ lnðuÞ þOððlnðuÞÞ2Þ ði 2 @V ; j 2 V ; @infjg � @VÞ

1

2
þ

1

2
lnðuÞ þ OððlnðuÞÞ2Þ ði 2 @V ; @i � Vn@VÞ

8>>>>>><>>>>>>:
ðu ! 1Þ ð50Þ

In the case of infinitesimal positive lnðuÞ, we see that the marginal probability PrfSij ¼ 1 j ug of each edge fi; jg with
i; j 2 Vn@V is larger than the one of each edge fi; jg with i 2 @V or j 2 @V . Thus the average of marginals
1
jEj
P

fi; jg2E PrfSij ¼ 1 j ug becomes larger with the ratio j@V j=jEj increasing. In the case of infinitesimal negative lnðuÞ
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Fig. 19. Dual planar graph for the planar graph in Fig. 12(b). (a) G� ¼ ðV�;E�Þ. (b) ðV�;E� þ @E�Þ.
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such that u ! 1� 0, we see that the values of the marginal probability at each edge fi; jg consisting of inner vertices
i; jð2 Vn@VÞ are smaller than those of edges fi; jg including boundary vertex, i.e. i 2 @V or j 2 @V . In this case the
average of the marginals 1

jEj
P

fi; jg2E PrfSij ¼ 1 j ug becomes smaller with increasing j@V j=jEj.
The above perturbative analysis thus explains the numerically observed behavior around u ¼ 1. Indeed, in Figs. 15

and 16, it was shown that 1
jEj
P

fi; jg2E PrfSij ¼ 1 j ug is equal to 1/2 both in the exact diagrammatical method and the
LBP. Moreover, in both the exact calculation and the LBP, 1

jEj
P

fi; jg2E PrfSij ¼ 1 j ug increases with infinitesimal
positive lnðuÞ and decreases with infinitesimal negative lnðuÞ when the ratio j@V j=jEj increases.

8. Concluding Remarks

In the present paper, we have considered undirected planar graphs such that the degree of every vertex is restricted to
two or three and have introduced probabilistic models for single connected cycles. By using the diagrammatical
method, we have obtained the exact expression for 1

jEj
P

fi; jg2E PrfSij ¼ 1 j ug. We have also derived the approximate
marginal probability PrfSij ¼ 1 j ug by using LBP. The comparison between the exact result and the approximate result
show that LBP gives us good accuracy except for a region near the transition point of the present probabilistic model. In
particular, at u ¼ 1 all marginals are equal to 1/2 for all finite as well as the infinite honeycomb lattice, and we find the
LBP results to be exact. For larger u-values LBP does no longer lead to exact, but rather good approximate results for
all finite and the infinite lattice. However, below the transition point at u ¼ 1, LBP and the exact diagrammatical
method lead to quite different results. This was numerically observed on lattices of finite size. Instead, for the infinite
lattice we analytically found different values for the transition point.

Our formulation of the diagrammatical method can be used to calculate the marginal probabilities PrfSij ¼ 1 j ug of
the present model also on planar random graphs for which the degree of every vertex is either two or three. This implies
that it is interesting to find the class of solvable probabilistic models as the diagrammatical method can then be used to
reveal properties regarding their cycles. This could be of interest when modeling the network structures found in nature
by random ones [20, 27].

The above analysis can be extended to a calculation of the single marginal probabilities PrfSij ¼ 1 j ug for each edge
fi; jg 2 E by considering the following partition function:

Zðfuij j fi; jg 2 EgÞ �
X
s

Y
fi; jg2E

uij
sij

 ! Y
i2V

�
X
k2@i

sik; 0

 !
þ �

X
k2@i

sik; 2

 ! ! !
: ð51Þ

Here each uij depends on the edge fi; jg. By differentiating Zðfuij j fi; jg 2 EgÞ with respect to uij, we obtain

PrfSij ¼ 1 j fuijgg ¼
1

uij

� �
@

@uij
ln Zðfuij j fi; jg 2 EgÞ:

¼
1

2uij
Tr ðI ��Þ�1 @

@uij
ðI ��Þ

� �
: ð52Þ

The partition function Zðfuij j fi; jg 2 EgÞ in Eq. (51) can be expressed as Eq. (15) in terms of the matrix I �� defined
by replacing u by uij in Eq. (12). It is interesting to calculate the marginal probabilities PrfSij ¼ 1 j fuijgg for various
random planar graphs for which the degree of every vertex is either two or three. It remains also one of future problems.

In the present paper, we showed the result for the marginal probability obtained by means of the LBP for the
honeycomb lattice with an infinite number of vertices. The result is very close to the exact results except for the region
near the transition point. In the future it would be interesting to discuss the dependency of the accuracy of LBP due to
finite size effects more qualitatively.

Also, it would be interesting to analyze the behaviour of the probabilistic models on planar graphs for which the
degree of the vertices can be more than three. In such cases, there still exist some solvable probabilistic models. One of
them is a vertex model with free fermion conditions [6, 7, 10, 11, 13–16]. However, the present probabilistic model of
Eqs. (1) and (2) does not satisfy free fermion conditions on planar graphs if the degree for each vertex is four. Thus, the
present probabilistic model would have to be modified so as to satisfy a free fermion condition at every vertex.

In the present paper, we calculate a marginal probability PrfSij ¼ 1 j ug for every edge fi; jg 2 E. In the problem of
finding long cycles in random graphs, we may have to calculate a probability that every vertex includes the same cycle.
In the large u limit, this corresponds to the probability that a Hamiltonian cycle exists in a given graph. Hence, it is
interesting to investigate this probability for the present probabilistic model.
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