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Many questions in the field of supernova core collapse still remain unanswered due to the complex multi-faceted
nature of the problem. A direct computation of the full neutrino radiation hydrodynamics would require a sustained
performance of PetaFlop/s and is therefore unfeasible on today’s supercomputers. The modeling required to
reduce the computational effort is accompanied by the ambiguity which physical effects are indispensable. As
input parameters also contain a certain amount of uncertainty, parameter studies are necessary. For this reason,
supernova simulations still require TFlop/s and a careful mapping of the software onto the given hardware is
necessary to assure the maximum performance possible.
In this paper, we describe the necessary extensions to the partly existing MPI parallelization of the simulation

code PROMETHEUS/VERTEX from the Max-Planck Institute for Astrophysics in Garching. With a complete
distributed memory parallelization, turn-around times can be decreased substantially. We show for a 15 solar mass
model that an efficient usage of up to 32 nodes NEC SX-8 is possible and therefore turn-around times can be
reduced by a factor of nearly seven.
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1. Introduction

Supernovae occur in stars more massive than about eight solar masses (M�) when nuclear fusion ceases. When the
star collapses to a neutron star, a huge amount of gravitational binding energy is liberated and mostly radiated away in
the form of neutrinos. They are believed, as depicted in Fig. 1, to deposit some of their energy behind the outgoing
shock wave, thus powering the explosion. Despite 40 years of research, the details of this mechanism are still not
completely understood due to the complex interplay of hydrodynamics, neutrino transport and nuclear physics. Today,
large-scale simulations provide more and more insights into the explosion mechanism, the origin of neutron star kicks,
and the production of the heavy elements.

Fig. 1. Suggested mechanism.
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The full neutrino radiation hydrodynamics model with 3D hydrodynamics and a 6D neutrino transport problem
would require a sustained performance of 1 to 10 PetaFlop/s, which is beyond the current capacity of modern
computing facilities. Therefore, the Max-Planck Institute for Astrophysics, Garching, Germany, currently uses in their
code PROMETHEUS/VERTEX a 2D hydro model and a ‘‘ray-by-ray-plus’’ variable Eddington factor method,
respectively. Successful explosions have already been obtained for some progenitor models in the 8–15M� range with
this model as shown in Fig. 2. Future simulations will cover a broader range of progenitor stars, and also provide
important data for nucleosynthesis studies as well as for neutrino and gravitational wave astronomy.

As mentioned, PROMETHEUS/VERTEX has high demands on computational power as well as main memory. This
restricts the choice of suitable architectures substantially. The whole code possesses a well-scaling shared-memory
parallelization using OpenMP, but only VERTEX, the resource-intensive neutrino part, has yet been parallelized using
MPI. So architectures with large SMP nodes like the IBM Power4/5/6 at the computing center in Garching are one
option. However, the single CPU performance is limited due to the scalar architecture. On the other hand, Müller et al.
(2007) have shown that the code is well-suited for vector computers such as the NEC SX-8 installation at HLRS.
Benkert and Fischer (2007) have recently optimized the kernel, the solution of the block-pentadiagonal linear system of
equations, for this architecture. However, with only eight processors per node SX-8, the missing distributed memory
parallelization of the hydrodynamics part carries more weight and limits the scalability of the code.

So far, with both options having drawbacks, the dilemma faced in all cases where high turn-around times for one
single run. Since it is unlikely that further tunings would increase the single CPU performance on scalar architectures,
the parallelization of the hydrodynamics part became essential being the only means to increase the overall sustained
performance and thus shorten turn-around times.

The remaining paper is outlined as follows: in Section 2, the numerics of the hydrodynamic-radiation model are
explained. In Section 3, the details of the parallelization including the necessary communications are presented. Results
for a 15M� progenitor star are presented in Section 4.

2. Numerics

The coupled system of non-linear PDEs describing the neutrino radiation hydrodynamics is decomposed via an
operator splitting approach into two independent parts, a hydro(dynamic) and a neutrino-transport/interaction one. The
hydrodynamics, i.e., the solution of the Euler equations for the stellar fluid consisting of nucleons, nuclei, leptons and
photons, is calculated with the time-explicit finite volume code PROMETHEUS which employs the third-order
Piecewise Parabolic Method (PPM) of Colella and Woodward (1984). Details on PROMETHEUS can be found in
Fryxell et al. (1989), Keil (1997), Kifonidis (2000) and Plewa and Müller (2001). The neutrino transport part is solved
with VERTEX as described in Buras et al. (2006) and Rampp and Janka (2002), which implements a Boltzmann solver
using a ‘‘ray-by-ray plus’’ variable Eddington factor method. In the following, we will explain for each part the
governing equations as well as their implementation in PROMETHEUS/VERTEX which is sketched in Fig. 3.

2.1 Hydrodynamics

The Eulerian, non-relativistic equations of hydrodynamics in spherical coordinates and azimuthal symmetry for an
ideal fluid with mass density �, radial, lateral and azimuthal components of the velocity vector ðvr ; v�; v�Þ, specific
energy � ¼ eþ 1

2
v2 (e is the specific internal energy), and the gas pressure p, are given by

Fig. 2. Entropy and electron fraction during the explosion of an 8.8 solar mass star.
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where �Newt is the Newtonian gravitational potential and QM ¼ ðQMr
;QM�

Þ and QE are the neutrino source terms for
momentum transfer and energy exchange, respectively.

As the system of equations (1)–(5) is under-determined, a closure relation is provided— the equation of state (EoS).
It calculates the gas pressure p dependent on �, e and the chemical composition of the fluid. In the simple case, i.e., in
nuclear statistical equilibrium, the composition can be described by a third variable, the electron fraction Ye which is
determined by a conservation equation

@tð�YeÞ þ @ið�YeviÞ ¼ QN ; ð6Þ

where the source term QN describes the change of the net electron number density (i.e., the density of electrons minus
that of positrons) due to emission and absorption of electron-flavor neutrinos. In the other case, the EoS additionally
depends on the mass fractions of every nuclear species present and a similar equation to (6) must be solved for each of
them.

PROMETHEUS covers steps H1 to H12 on the left side of Fig. 3. These steps form one PPM-cycle which consists of
two CFL time steps H1–H6 and H7–H12. PROMETHEUS evaluates the left hand sides of the equations of
hydrodynamics in a radial (r-)sweep (H2/H9) and a lateral (�-)sweep (H4/H7). The order of r- and �-sweep is switched
after every CFL time step to restore second order convergence in time. Steps H1/H8 and H3/H10 are a result of the
discretization which is discussed in Section 2.3. Since the innermost five radial zones form a single spherical core,
which is a one-dimensional structure, boundary values and fluxes have to be averaged over all angular zones.

Steps H5/H11 provide the Newtonian gravitational potential �Newt which enters on the right hand side (RHS) of the
Eulerian equations (2), (3) and (5) by solving the Poisson equation

��Newt ¼ 4�G�; ð7Þ

where G is Newton’s constant. Other contributions to the RHSs, i.e., gravitational, energy and composition changes due
to neutrino and burning effects, are each calculated subsequently in operator-split steps in H6/H12.

More than one PPM-cycle c can be executed per transport time step (typically c ¼ 1; . . . ; 5).

2.2 Equations for the Neutrino Transport

The neutrino distribution function f ðr; �; �; �;�;�; tÞ describes, at every point ðr; �; �Þ in space, the distribution of
neutrinos propagating with energy " into direction ð�;�Þ at time t. It influences the source terms for the energy,
momentum and electron fraction of the fluid. Its evolution in time is governed by a Boltzmann equation. To make
computations feasible, the seven-dimensional problem is reduced to a four-dimensional one by considering the angular
moments of � and � and assuming azimuthal symmetry, i.e., independence on �, as well as independence on �. This
results in four equations: two moment equations with four unknown moments J, H, K and L to calculate the neutrino
energy density J and the neutrino energy flux H. In addition, VERTEX simultaneously solves another pair of equations
for the neutrino number density J ¼ J=� and flux H ¼ H=� in order to guarantee both energy and lepton number
conservation1. With the Eddington factors fK and fL from the solution of a simplified Boltzmann equation, the higher
moments K ¼ fKJ and L ¼ flJ are computed. Additionally, two equations to conserve the neutrino number and two
equations for the update of the energy e and of the electron fraction Ye are needed. The system of moment equations in
its full detail is given by Eqs. (B.13)–(B.16) in Buras et al. (2006).

The steps of VERTEX are displayed on the right side of Fig. 3. VERTEX solves the set of moment equations like-
wise in two operator-split steps corresponding to a lateral and a radial sweep. In the lateral sweep T1, the �-dependent
terms are evaluated containing derivatives of the zeroth and first order moments J and H, of J and of H, which
corresponds to the lateral advection of the neutrinos with the stellar fluid. This implies that equations
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need to be solved with an explicit upwind scheme for each radius, each energy bin and each type of neutrino, where �
represents one of the moments J, H, J or H.

In the radial sweep T2, the remaining �-dependent terms are calculated. Step T3 solves the simplified Boltzmann
equation for K and L. Subsequently in step T4, the moment equations for J and H are calculated, where the RHS
possesses a non-local coupling in energy space due the inclusion of inelastic scattering processes. An implicit first order
backward time differencing scheme is applied ray-by-ray which gives rise to independent block-pentadiagonal systems
when solved with a Newton-Raphson procedure. After iterating steps T3 und T4 until convergence, the full moment
equations are solved in step T5 for J, H, J and H, where J and H are recalculated with higher precision.

If convergence on all rays has been obtained, the angular moments of the collision integral of the Boltzmann
equation are used to calculate the source terms QN , QE and QMr

of the equations of hydrodynamics in step T7. In the
ray-by-ray-plus approximation, QM�

is given by the lateral neutrino pressure gradient. After that, the source terms are
averaged inside the spherical core (T8) and applied to the hydrodynamic equations (T9).

The output of simulation results (O) completes one time step.

Fig. 3. Schematic overview of the algorithms of PROMETHEUS (left) and VERTEX (right). Colored boxes indicate MPI
communications in the fully parallelized code (see Section 3.2) with neighborhood communications (dashed lined yellow boxes)
and global communications (solid lined blue boxes).
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2.3 Discretization

The transport as well as the hydro equations are discretized on a computational domain ½0; rmax� � ½�min; �max�,
basically with Nr radial zones and N� angular zones. For the hydrodynamic grid, the innermost five radial zones possess
only one angular zone, e.g. N� ¼ 1. They are computed spherically as the CFL-condition would impose severe
limitations on the timestep because of the singularity of the grid. For the transport grid, such modifications are
not necessary as the transport equations are solved implicitly. The transport grid, however, is coarsened in radial
direction outside a radius of 400–500 km since the matter becomes so thin, that neutrinos do not interact with the stellar
fluid.

3. Parallelization

After describing the existing MPI parallelization, we explain the necessary steps and concepts of the MPI
parallelization for the hydro part. We distinguish between next-neighbor and collective communications: in next-
neighbor communications, neighboring processes according to the domain decomposition exchange data with each
other in point-to-point communications. In collective operations, all processes take part simultaneously. For this
application, the latter occur in two flavors: as AllReduce operations, in which an operation, e.g., a summation, is
executed on a data set and the result is returned to all processes, and as AllGatherV operations, where each process
sends (a varying number of) data to every other process where it is stored in rank order.

3.1 The Existing MPI Parallelization

Up to now, only the neutrino part was parallelized with MPI. The domain was decomposed over different angular
zones as for the ray-by-ray Boltzmann method the neutrino moment equations decouple for different latitudes. The
hydrodynamics part was redundantly executed by each process since its execution time compared to the neutrino part is
short for a small number of processes. For the test case presented in Section 4, only 1.2% of the execution time of the
main loop is spent in the hydro part in the serial case. The data itself was stored in Fortran common blocks and not
distributed among the processes. During the neutrino part, each process updated its part of the data as specified by the
domain decomposition. Nevertheless, all results were needed on each process to compute the hydrodynamics. As
consequence, large amounts of data had to be exchanged once per time step in a collective operation (during step T6 in
Fig. 3). This is a minor problem on the NEC SX-8 because of its IXS switch with transfer rates of 16GB/s. More
important is that because of the missing hydro parallelization, also some steps in the neutrino part were executed
redundantly on the whole grid: the backup of transport quantities in case the transport step fails, the lateral advection of
neutrinos and the mapping of transport quantities onto the hydro grid within step T7 as well as the computation of
neutrino source terms (T9). As for the hydro part, these steps take only a fraction of the total computation time for a
single MPI process (< 0:6% for the test case), but avoid an efficient scaling to large numbers of processes.

3.2 The Full Parallelization

The parallelization of the hydrodynamics part uses the same partitioning. Necessary parts of the code have been
transformed to Fortran90 using modules with allocatable arrays. A real data distribution among the processes has been
implemented. As consequence of the latter, also changes within the neutrino part were necessary and the single
collective communication was replaced by multiple communications. At the moment, the MPI parallelization requires
that each process covers at least four angular zones since the PPM reconstruction algorithm needs the values from four
laterally adjacent cells in both directions as input for the lateral sweep. This condition is regarded insignificant for
present production runs on NEC SX-8 and can be removed at any time by including communications with non-
immediate neighbors if the need arises. If the domain is spread evenly across all processes, the work load is in general
perfectly balanced since the amount of work per angular zone is the same. The only possibility for load imbalances to
occur are different numbers of Newton iterations within step T4 or a different number of iterations needed to complete
steps T3 and T4.

The following paragraphs describe the required communications within the hydrodynamics and neutrino parts. Apart
from those, a collective communication (HT0) controls the multi-timestepping of the neutrino transport and determines
the size of the hydro time step based on the CFL condition. At the end, two additional collective communications per
global time step are necessary for data output (O).

3.2.1 Hydrodynamics

During each CFL time step, five communications take place: two next-neighbor and three collective ones of type
AllReduce.

The first two collective communications result from the core discretization. As is known, the PPM method uses
piecewise parabolic shape functions and therefore requires four ghost cells. During the solution of the Eulerian
equations of hydrodynamics (H1/H8), the four radial zones N5; . . . ;N8 right outside the core are considered for the
boundary conditions of �, vi, ", p and other values needed for the PPM method. For each variable, averages over all
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corresponding angular zones are computed. The same is done during steps H3/H10 for fluxes across the inner core
interface. The averaged values are needed for the single radial sweep within the core which is executed locally by every
MPI process.

The third collective communication in steps H5/H11 is related to the Poison equation (7) to determine the
Newtonian gravitational potential �Newt. Using Green’s method with orthonormal basis functions in spherical polar
coordinates, one obtains an integral equation over r and �. While the integration in radial direction can be executed
locally, the integration in lateral direction results in a global summation.

The first next-neighbor communication serves again to provide the input for the PPM reconstruction method. During
the �-sweep (H4/H7), all the state variables in the four leftmost and rightmost angular zones covered by each process
are exchanged to update the ghost-cells on the neighboring processes. The presence of the second next-neighbor
communication in the radial sweeps (H2/H9) has a numerical reason: in order to avoid the phenomenon of odd-even
decoupling near grid-aligned shocks investigated by Quirk (1994), PROMETHEUS adaptively switches to an
approximate Riemann solver (HLLE) developed by Einfeldt (1988), which uses the values of v� in the adjacent grids
cells in the lateral direction.

As mentioned, more than one PPM-cycle c can be executed per transport time step. Thus, one global time step would
require 5 � 2 � c communications in the hydro part.

3.2.2 Neutrino Transport

During the neutrino transport, two next-neighbor communications and two collective ones take place.
The first communication occurs during the calculation of the neutrino transport equations (T1). As already

mentioned, Eq. (8) describes the lateral advection of the neutrinos with the stellar fluid and thus couples the angular
moments of the neutrino distribution of neighboring angular zones. Because of the upwind discretization scheme used,
J, H, J, H and �� ¼ v�=r are exchanged in a next-neighbor communication.

After one transport step, the number of iterations along with some other information are exchanged in a collective
communication of type AllGatherV (T6). The purpose is to verify the convergence criteria for the radial sweep and
decide whether the transport step needs to be redone.

Another next-neighbor communication is needed for the coupling between radiation and hydrodynamics (T7) when
the transport grid is mapped back to the hydro grid since the momentum transfer from the neutrinos to the medium in
lateral direction QM�

is discretized with central differences. For further details, the reader is refered to Eqs. (B.16)–
(B.20) in Buras et al. (2006). An additional collective communication is required to average the sourceterms inside the
spherical core which are provided by the transport step on all processes.

4. Numerical Results

To evaluate the variants with and without parallel hydrodynamics, a 15M� progenitor star with Nr ¼ 250 radial and
N� ¼ 256 angular zones was evolved for 50 time steps without a spherical core discretization. This setup is slightly
smaller than for a typical production run where the number of radial zones would be twice as large. The goals of the
comparison are threefold: firstly, to investigate how many processors can be used efficiently, secondly, to determine the
reasons for limits imposed on parallel efficiency, and thirdly, to evaluate the consequences of the parallelization on
turn-around times and thus the number of simulation runs which can now be executed in a one-year period. Since the
focus of our work lies on the reduction of turn-around times and for the sake of a common pattern, we use one MPI
process and eight OpenMP threads per node NEC SX-8. This allows a maximum scaling as the variant with parallel
hydro requires 4 angular zones for every MPI process and multiple MPI processes per node would lower the total
number of nodes that can be used. In addition, the variations between different combinations of threads and MPI
processes are marginal. On one node, the differences in execution times for one thread and eight MPI processes, two
threads and four MPI processes, four threads and two MPI processes as well as eight threads and one MPI process are
less than 1% for the main loop.

For the variant without parallel hydrodynamics, the accumulated runtimes depicted on the left side of Fig. 4 show
both an increase for the hydro and the neutrino part. For the hydrodynamics, this is clearly due to the multiple execution
on each MPI process. For the neutrino part, the main reason is also the redundant execution of several steps. The
parallel efficiency, also shown on the left side of Fig. 4, decreases fast to 0.91 for four nodes and to 0.82 for eight
nodes. This signifies that production runs are only advisable on four nodes or less. The degree of parallelism estimated
from the data is 0.967. In the 32-node run, 244.4GB are transfered within the global communication.

Contrarily, for the variant with parallel hydrodynamics, the accumulated execution times shown on the right side of
Fig. 4 increase only slightly. For the neutrino part, this results mostly from waiting times in step T6 before the
AllGatherV operation to verify the convergence criteria of the neutrino transport step. For the hydro part, the increase
in runtime is primarily due to the communication in step HT0. The degree of parallelism estimated from the data is now
0.997. For the 32-node run, the total amount of data communicated has been reduced to 3.2GB. Despite this
tremendous decrease of transfered data, the communication time for HT0 in the parallel version is comparable to the
communication time needed to exchange all data for the variant without parallel hydrodynamics on the SX-8. For the
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parallel case, the communication in HT0 imposes a global synchronization after a larger time of calculation and is
expensive due to imbalances resulting from OS jitter.

Figure 5 shows the improvements in terms of number of possible simulation runs per year and sustained
performance. The former has been extrapolated from the runs with 50 timesteps including pre- and postprocessing and
times for writing 1000 restart files per simulation. With an estimated 105 timesteps and taking into account that the
application without parallel hydro scales only up to four nodes, one is able to do 103 runs with this particular grid setup
(on four nodes) without parallel hydro and nearly seven times as much, namely 718 (on 32 nodes) at best.

5. Conclusion

In this paper, we have shown that the MPI parallelization of the hydrodynamics part in addition to the existing
distributed memory parallelization of the neutrino part is the second important step towards TFlop performance for the
neutrino hydrodynamics simulation code PROMETHEUS/VERTEX after adapting its kernel to the vector architecture.
The measurements on the NEC SX-8 installation at HLRS show that the weak scaling has improved greatly, allowing
an efficient use of up to 32 nodes in contrast to four nodes beforehand. With this achievement, nearly seven times as
much simulation runs can be done which eases parameter studies on input parameters and physical modeling.

Our future research will focus on the performance of a more detailed progenitor star with improved physics. The
Adaptive Data and Communication Library (ADCL), developed at the University of Houston and HLRS, will be
integrated into the code as a means to optimize the performance of MPI communications in a self-adaptive way. Is is
anticipated that a different algorithm for the collective communications will further enhance the parallel performance.

Notes
1This procedure is necessary because a conservative discretization of the neutrino energy equation does not

necessarily conserve lepton number despite the fact that the neutrino energy and number density equations are
analytically equivalent.

Fig. 4. Accumulated execution times for neutrino and hydro part (columns) and parallel efficiency (lines) for a 15M� progenitor
star evolved for 50 timesteps without parallel hydrodynamics (left) and with parallel hydrodynamics (right).

Fig. 5. Number of possible simulation runs per year (lines) and sustained performance (columns) for a 15M� progenitor with and
without parallel hydrodynamics.
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