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We show that the multiplication map of global sections of an ample line bundle and a nef line bundle on a
projective toric surface is surjective. We also prove that on a Gorenstein toric 3-fold whose anti-canonical bundle
is nef, the multiplication of global sections of an ample line bundle by those of the anti-canonical bundle is
surjective.
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1. Introduction

Let X be a nonsingular projective toric surface, and let A and B be an ample line bundle and a globally generated line
bundle, respectively, on X. Then Fakhruddin [1] shows that the multiplication map of their global sections

�ðX;AÞ � �ðX;BÞ ! �ðX;A� BÞ

is surjective. In this article we shall generalize this to the case when X may have singularities.

Theorem 1. Let X be a projective toric surface may have singularities. Let A be an ample line bundle and B a
globally generated line bundle on X. Then the multiplication map

�ðX;AÞ � �ðX;BÞ ! �ðX;A� BÞ

is surjective.

Let T ¼ ðk�Þn be an algebraic torus of dimension n defined over an algebraically closed field k. Let denote M ¼
HomgrðT ; k�Þ the group of characters of T . Then we have M ¼� Z

n and T ¼ Spec k½M�. A normal algebraic variety
X is called toric if it contains an algebraic torus T as a dense open subset, together with an algebraic action T � X ! X

that extends the natural action of T on itself.
Let OXðDÞ be a line bundle on X defined by a Cartier divisor D. If OXðDÞ is globally generated, then there is a

convex polytope PD ¼ Convfm1; . . . ;mrg in M � R ¼� R
n with some mi 2 M such that

�ðOXðDÞÞ ¼�
M

m2PD\M
k eðmÞ;

where eðmÞ denotes the character of T corresponding to m 2 M (see, for instance, Lemma 2.3 [9] or Section 3.5 [3]).
In order to emphasize that all vertices of PD are lattice points, we call PD an integral convex polytope.

We also know that a line bundle on a complete toric variety is nef if and only if it is generated by its global sections
(see, for instance, Theorem 3.1 [7]). If D1 and D2 are nef divisors on a toric variety X, then the convex polytope
corresponding to D1 þ D2 coincides with the Minkowski sum PD1

þ PD2
¼ fx1 þ x2; xi 2 PDi

ði ¼ 1; 2Þg. Moreover,
the surjectivity of the multiplication map

�ðOXðD1ÞÞ � �ðOXðD2ÞÞ �! �ðOXðD1 þ D2ÞÞ

is equivalent to the equality

PD1
\M þ PD2

\M ¼ ðPD1
þ PD2

Þ \M:

We note that the surjectivity of the multiplication map is independent of characteristic of the ground field k.
If D is an ample divisor, then dimðPDÞ ¼ dimX. Conversely, any convex polytope P inM � R with dimP ¼ rank M

defines a polarized toric variety ðX;DÞ with dimX ¼ dimP so that the set of global sections of OXðDÞ is the vector
space with a basis feðmÞ;m 2 P \Mg.

By using this correspondence, we can interpret the Theorem 1 as a theorem in combinatrics of convex
polygons.
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Theorem 2. Let M ¼ Z
2 and let P;Q integral convex polygons in MR. Assume that the set of all edges of Q

corresponds to a subset of edges of P so that corresponding edges are parallel to each other and they are located in the
same direction from their interiors. Then we have

P \M þ Q \M ¼ ðPþ QÞ \M:

C. Haase, B. Nill, A. Paffenholz and F. Santos [4] also prove Theorem 2 independently. Their proof is different
from us.

We have an application of Theorem 1 to Gorenstein toric varieties of dimension three. We remark that on a
Gorenstein toric 3-fold Y an ample line bundle L is very ample if Lþ KY is globally generated. This is given in
Proposition 1.

A normal Gorenstein variety is called Fano if its anti-canonical line bundle is ample. Hence the anti-canonical
bundle on a Gorenstein toric Fano 3-fold is very ample. By applying Theorem 1 we have more about the ant-canonical
bundle.

Theorem 3. Let Y be a Gorenstein toric Fano variety of dimension three. Then, for a globally generated line bundle
B on Y , the multiplication map

�ðY ;BÞ � �ðY ;OY ð�KY ÞÞ ! �ðY ;B�OY ð�KY ÞÞ

is surjective.
In particular, the anti-canonical line bundle OY ð�KY Þ is normally generated, that is, the multiplication map

�ðY ;OY ð�KY ÞÞ � �ðY ;OY ð�kKY ÞÞ ! �ðY ;OY ð�ðk þ 1ÞKY ÞÞ

is surjective for all k � 1.

We can weaken the assumption on �KY , but we have to add the condition that B is ample.

Theorem 4. Let Y be a projective Gorenstein toric variety of dimension three such that �KY is nef. Then, for an
ample line bundle A on Y , the multiplication map

�ðY ;AÞ � �ðY ;OY ð�KY ÞÞ ! �ðY ;A�OY ð�KY ÞÞ

is surjective.

Proofs are given in Section 4.
Ogata [10] also gave an algebro-geometric proof of Fakhruddin’s Theorem in terms of blowing-ups and minimal

models of rational surfaces.

2. Projective Toric Varieties

In this section we recall some basic notion about toric varieties and line bundles following Oda’s book [9], or
Fulton’s book [3]. Let k be an algebraically closed field of any characteristic. In this article we consider varieties
defined over k.

Let N be a free Z-module of rank n, M its dual and h; i : M � N ! Z the canonical pairing. By scalar extension to
the field R of real numbers, we have real vector spaces NR :¼ N �Z R and MR :¼ M �Z R. We denote the same h; i as
the pairing ofMR and NR defined by scalar extension. Let TN :¼ N �Z k� ¼� ðk�Þn be the algebraic torus over the field k,
where k� is the multiplicative group of k. Then M ¼ HomgrðTN ; k�Þ is the character group of TN and TN ¼ Spec k½M�.
For m 2 M we denote eðmÞ as the character of TN . Let � be a finite complete fan in N consisting of strongly convex
rational polyhedral cones � in NR, that is, with a finite number of elements v1; . . . ; vr in N we can write as

� ¼ R�0v1 þ � � � þ R�0vr

and it satisfies that � \ f��g ¼ f0g. Then we have a complete toric variety X ¼ TNembð�Þ :¼ [�2�U� of dimension n

(see Section 1.2 [9], or Section 1.4 [3]). Here U� ¼ Spec k½�_ \M� and �_ :¼ fy 2 MR; hy; xi � 0 for all x 2 �g is
the dual cone of �. For the origin f0g 2 �, the affine open set Uf0g ¼ Spec k½M� is the unique dense TN-orbit. We note
that a toric variety is always normal.

Set �ðsÞ :¼ f� 2 �; dim � ¼ sg. Then � 2 �ðsÞ corresponds to the TN-orbit Spec k½�? \M� and its closure Vð�Þ,
which is also a TN-invariant subvariety of dimension n� s. Hence �ð1Þ corresponds to TN-invariant irreducible
divisors. If for any cone � 2 � of dimension n there exist a Z-basis v1; . . . ; vn in N such that

� ¼ R�0v1 þ � � � þ R�0vn;

then the toric variety X is nonsingular.
Let PicðXÞ be the group of all invertible sheaves modulo isomorphisms. The map D 7!OXðDÞ gives a

homomorphism from the group of Cartier divisors onto PicðXÞ. Let An�1ðXÞ denote the group of all Weil divisors
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modulo the subgroup of principal divisors ½divð f Þ�. The map D 7!½D� determines an injective homomorphism

PicðXÞ ,! An�1ðXÞ:

Since X is toric, any m 2 M determines a principal divisor divðeðmÞÞ, which gives a homomorphism from M to the
group DivðXÞ of TN-invariant divisors. Let fD1; . . . ;Ddg be the set of all TN-invariant irreducible divisors. Then we have
a commutative diagram with exact rows (see Section 3.4 [3]):

0 ! M ! DivðXÞ ! PicðXÞ ! 0

k # #
0 ! M ! 	d

i¼1Z � Di ! An�1ðXÞ ! 0

ð1Þ

If X is nonsingular, then the two rows in (1) coincide.
Now let �ð1Þ ¼ f�1; . . . ; �dg such that Vð�iÞ ¼ Di for i ¼ 1; . . . ; d. Let OXðDÞ be a line bundle on X defined by

a Cartier divisor D. We may write D ¼
P

i aiDi in DivðXÞ up to isomorphisms of line bundles. Then set

PD :¼ fu 2 MR; hu; vii � �ai for all ig;

where vi 2 N are the generators of �i \ N. We note that PD is a rational convex polytope (possibly empty) and that
its vertices may not have coordinates of integers. In any case we have

�ðOXðDÞÞ ¼�
M

m2PD\M
k eðmÞ;

where eðmÞ denotes the character of TN corresponding to m 2 M (see, for instance, Lemma 2.3 [9] or Section 3.5 [3]).
If OXðDÞ is globally generated, then there exist m1; . . . ;mr 2 M such that PD ¼ Convfm1; . . . ;mrg, which we call
an integral convex polytope.

If D1 and D2 are nef TN-invariant Cartier divisors on a toric variety X, then the convex polytope corresponding to
D1 þ D2 coincides with the Minkowski sum PD1

þ PD2
¼ fx1 þ x2; xi 2 PDi

ði ¼ 1; 2Þg. In particular, if D1 ¼ D2 ¼ D,
then we have P2D ¼ PD þ PD ¼ 2PD. Moreover, the surjectivity of the multiplication map

�ðOXðD1ÞÞ � �ðOXðD2ÞÞ �! �ðOXðD1 þ D2ÞÞ

is equivalent to the equality

PD1
\M þ PD2

\M ¼ ðPD1
þ PD2

Þ \M:

If OXðDÞ is ample, then it is globally generated and that dimðPDÞ ¼ dimX.
Conversely, any convex polytope P in M � R with dimP ¼ rank M defines a polarized toric variety ðX; LÞ with

dimX ¼ dimP. For a vertex v of P, set CðvÞ :¼ R�0ðP� vÞ ¼ frðx� vÞ; r � 0 and x 2 Pg. Set �ðvÞ ¼ CðvÞ_ 
 NR

and � ¼ fall faces of �ðvÞ; v 2 VertðPÞg. Then X ¼ TNembð�Þ is a toric variety with an ample line bundle L such that

�ðX;LÞ ¼�
M

m2P\M
k eðmÞ:

For � ¼ �ðvÞ the affine variety U� is UðvÞ :¼ Spec k½CðvÞ \M� and X is covered by these open sets
X ¼

S
v2VertðPÞ UðvÞ. If CðvÞ \M is generated by ðP� vÞ \M as a semigroup for all vertices v 2 VertðPÞ, then the

ample line bundle L is very ample.

3. Multiplication Maps

In this section we will give a proof of Theorem 1. Let X ¼ TNembð�Þ be a projective toric surface. Thus N ¼ Z
2 and

M ¼� Z
2. Let A and B be an ample line bundle and a nef line bundle on X, respectively. Let P and Q be integral convex

polytopes corresponding to A and B. We shall show that

P \M þ Q \M ¼ ðPþ QÞ \M: ð2Þ

We generalize the method of Fakhruddin [1].
When dimQ ¼ 0, that is, B ¼ OX , the equality (2) trivially holds.
When dimQ ¼ 1, there exist two cones �1; �2 2 �ð1Þ such that �1 ¼ ��2. In other words, there exist a surjective

morphism f : X ! P
1 and a divisor D on P

1 such that B ¼� f �O
P
1 ðDÞ. In this case P has two edges F1;F2 parallel to Q.

Let L ¼� Z be a sublattice of M such that LR contains F1. Since L is a direct summand of M, we can
choose m0;m1; . . . ;mr 2 M so that the union of the line segments P \ ðLþ miÞ covers the lattice points P \M.
The following lemma implies the equality (2).

Lemma 1 (Fakhruddin [1]). Let I; J be closed intervals of the real line R such that I \ Z 6¼ ; and that J ¼ ½a; b�
with a; b 2 Z. Then we have
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ðI þ JÞ \ Z ¼ I \ Zþ J \ Z:

Proof. By a parallel transform of Z, we may assume that I and J are contained in the positive part of R. If
J ¼ Jn :¼ ½n; nþ 1�, then it is trivial. We may decompose J into the union J ¼ [r

j¼0Jnþj of closed intervals of length
one. Then I þ J ¼ [r

j¼0ðI þ JnþjÞ. �

Now consider the case when dimQ ¼ 2. Define s : MR �MR ! MR as sðx; yÞ ¼ xþ y. For any m 2 ðPþ QÞ \M

we have to find a lattice point in s�1ðmÞ \ ðP� QÞ. The second projection maps s�1ðmÞ \ ðP� QÞ to Q \ ðm� PÞ.
If Q \ ðm� PÞ contains a lattice point m1, then m1 2 Q \M and m� m1 2 P \M. If dimQ \ ðm� PÞ � 1, then it
contains a lattice point.

Set dimQ \ ðm� PÞ ¼ 2. If a vertex of Q or m� P is contained in Q \ ðm� PÞ, then it is a lattice point. We may
assume that Q \ ðm� PÞ contains no vertices of Q nor m� P. Take an edge E of Q such that E \ ðm� PÞ 6¼ ;.
Fakhruddin finds an integral polygon in Q containing E when X is nonsingular. Let � : ~XX ¼ TNembð ~��Þ ! X be the
minimal resolution of the singularities. Here ~�� is the fan obtained by the minimal nonsingular refinement of �. Then Q
corresponds to the nef line bundle ��B on ~XX. The edge E corresponds to a TN-invariant divisor Vð ~��0Þ on ~XX so that ~��0 has
the direction perpendicular to E.

We note that �0 ¼ ~��0 2 �ð1Þ. By assumption we have ��0 =2 �ð1Þ. Take the cone � 2 �ð2Þ with � � ��0. Recall
the minimal nonsingular subdivision of �. First take the convex hull of � \ N n f0g. Make 1-dimensional cones with
apex the origin 0 through the lattice points on the boundary of the convex hull.

0

∼ρ1

∼σ = ∼ρ1 + ∼ρ2

∼ρ2
σ

Set ~�� ¼ ~��1 þ ~��2 2 ~��ð2Þ the 2-dimensional cone containing ��0. Let vi 2 N be the generator of ~��i \M for i ¼ 1; 2.
Then fv1; v2g is a basis of N. Let fu1; u2g be the basis of M dual to fv1; v2g. Since ~�� 
 �, we have �_ 

~��_ ¼ R�0u1 þ R�0u2, hence, we can write

�_ ¼ R�0ðau1 þ bu2Þ þ R�0ðcu1 þ du2Þ;

with a > 0; b � 0; d > 0 and c � 0.

0 u1

u2 (1,1) (a,b)

(c,d)

σ v

We note that �_ contains the lattice point u1 þ u2 in its interior. In fact, we can write � as

� ¼ R�0ð�bv1 þ av2Þ þ R�0ðdv1 � cv2Þ:

Since the line segment connecting v1 with v2 is contained in the boundary of the convex hull of � \ N n f0g, the line
connecting v1 and v2 meets with two faces of �. Thus we have a > b and c < d.

Now we devide into two cases: � ~��0 is contained in ~��ð1Þ, or not.
Case I: � ~��0 =2 ~��ð1Þ.

Lemma 2 (Fakhruddin [1]). In the above notation, when � ~��0 =2 ~��ð1Þ, there exists a integral triangle R contained in
Q with the edge E such that other two edges F1 and F2 are perpendicular to ~��1 and ~��2, respectively.

Proof. Only in this proof, we rename elements of ~��ð1Þ except ~��0. Set ~��ð1Þ ¼ f ~��0; ~��1; . . . ; ~��dg so that the indices
increase anti-clockwise. Let k be the number such that ~��k and ~��kþ1 are separeted by � ~��0. Let vi 2 N be the generator of
~��i \ N. Let denote Di ¼ Vð ~��iÞ the TN-invariant irreducible divisor on the nonsingular toric surface ~XX. Set the nef line
bundle ��B ¼ O ~XXð

P
i biDiÞ. Then we recall
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Q ¼ fu 2 MR; hu; vii � �bi for all ig:

Let m1 and m2 in M be the end points of E. Then we have

hm1; v0i ¼ hm2; v0i ¼ �b0:

Set hm1; v1i > hm2; v1i. Then we have

hm1; vii > hm2; vii for 1 � i � k;

hm1; vii < hm2; vii for k þ 1 � i � d:

Let ck and ckþ1 be the integers with hm2; vki ¼ �ck and hm1; vkþ1i ¼ �ckþ1. Set c0 ¼ b0 and

R ¼ fu 2 MR; hu; vii � �ci for i ¼ 0; k; k þ 1g:

Then R is a triangle with the edge E. Let F1 and F2 be the edges of R perpendicular to vkþ1 and vk, respectively. We
note that the vertex m0 :¼ F1 \ F2 is a lattice point because fvk; vkþ1g is a Z-basis of N.

We have to show R 
 Q. Now let

Rðbk; bkþ1Þ ¼ fu 2 MR; hu; vii � �bi for i ¼ k; k þ 1g

the rectangular region. Then Rðbk; bkþ1Þ contains Q and the rectangular triangle R. We note that the vertex m00 of
Rðbk; bkþ1Þ is also a lattice point. Furthermore, we see that m00 is contained in Q because ��B is globally generated (see
Theorem 2.7 in [9]). Thus the triangle Convfm00;Eg contains R and is contained in Q. �

In terms of the basis fu1; u2g dual to fv1; v2g, we can write R in Lemma 2 as R ¼ Convf0; xu1; yu2g with positive
integers x; y. Set r the greatest common divisor of x and y. Then we have an integral triangle R0 with R ¼ rR0.

On the other hand, since A is ample on X, the corresponding polygon P has an edge E0 parallel to E. Since ��A is
also a globally generated line bundle on ~XX, we can apply Lemma 2 to P, and we obtain an integral triangle R0 with
the edge E0. We may write R0 ¼ sR0 with some positive integer s. Let F0

1 and F0
2 be the edges of R0 parallel to F1 and

F2, respectively.
Since �_ is similar to P near some vertex m0, we can draw the picture of P as the following (we set m0 ¼ 0 by a

parallel transform of M). Two edges meeting m0 have the ends of coordinates ða; bÞ and ðc; dÞ, respectively. From the
above argument, we have a > b � 0 and 0 � c < d.

0 u1

u2 (1,1)

F2

F1
R

E

P

(a,b)

(c,d)

E
R

F2

F1

We may transform the vertex F1 \ F2 to the origin 0 by a parallel transform of M. Assume that the face F0
i of R

0 is
contained in the line fu 2 MR; hu; vii ¼ dig for i ¼ 1; 2. Then we decompose Pþ R into a union of three parts P0

1;P
0
2

and R0 þ R, where

P0
i ¼ ðPþ RÞ \ fu 2 MR; 0 � hu; vii � dig for i ¼ 1; 2:

Let LiðdÞ ¼ fu 2 MR; hu; vii ¼ dg for i ¼ 1; 2. Then we have

P0
i \M ¼

[di

j¼0

P0
i \ Lið jÞ \M for i ¼ 1; 2:

Since P0
i \ Lið jÞ ¼ P \ Lið jÞ þ Fi from the picture, if P \ Lið jÞ \M 6¼ ;, then we can apply Lemma 1.

Set S :¼ Convf0; ða; bÞ; ðc; dÞg the triangle contained in P. The line fðx; xÞ 2 MR; x 2 Rg meets the boundary of S at
two points, the origin 0 and the other point ðx0; x0Þ. Since the point ðx0; x0Þ is on the edge of S connecting ða; bÞ and
ðc; dÞ, we can write as

ðx0; x0Þ ¼ �ða; bÞ þ ð1� �Þðc; dÞ
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with 0 � � � 1. Hence we have

x0 ¼ �aþ ð1� �Þc ¼ cþ �ða� cÞ ¼ aþ ð1� �Þðc� aÞ;

in other words, we have x0 � minfa; cg. If a � c, then the lattice points ð j; jÞ ð0 � j � cÞ are contained in the triangle
S ¼ Convf0; ða; bÞ; ðc; dÞg, hence, they are contained in P and P \ L1ð jÞ contains lattice points for 0 � j � c. Moreover,
if a � c, then P contains the vertical line segment G1 connecting ðc; cÞ and ðc; dÞ. Since P is convex, the convex hull of
F0
1 [ G1 contains at least one lattice point in the intersection with L1ð jÞ for c � j � d1. We can apply Lemma 1.

If c � a, then the lattice points ð j; jÞ ð0 � j � aÞ are contained in the triangle S ¼ Convf0; ða; bÞ; ðc; dÞg 
 P and
P contains the vertical line segment G0

1 connecting ða; aÞ and ða; bÞ. We can use G0
1 insead of G1. Thus we have

P0
1 \M 
 P \M þ R \M. It is same for P0

2.
For the part R0 þ R ¼ ðr þ sÞR0, we can use the fact that

R0 \M þ � � � þ R0 \M
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{t times

¼ ðtR0Þ \M

for all t � 1.
This implies that

P \M þ R \M ¼ ðPþ RÞ \M:

Since Pþ R � Pþ E 3 m (we assumed E \ ðm� PÞ 6¼ ;), we can find x 2 P \M and y 2 R \M 
 Q \M with xþ
y ¼ m in the case I.

Case II: � ~��0 2 ~��ð1Þ. In this case we may set � ~��0 ¼ ~��1 
 ~�� ¼ ~��1 þ ~��2. We can draw the picture of P as the
following.

0 u1

u2 (1,1)

E

(a,b)

(c,d)

P

E

E0 is an edge of P parallel to E and perpendicular to v1. Assume that E0 is contained in the line fu 2 MR; hu; vii ¼ d1g.
We may transform the bottom end of E to the origin. Then Pþ E is contained in the region fu 2 MR; 0 � hu; vii � d1g,
and we have the decomposition

ðPþ EÞ \M ¼
[d1

j¼0

ðP \ L1ð jÞ þ EÞ \M:

If we replace E by F1, then we see that this is the same as P0
1 in the case I and we have

P \M þ E \M ¼ ðPþ EÞ \M:

Since P \ ðm� EÞ 6¼ ;, we can find x 2 P \M and y 2 E \M with m ¼ xþ y in the case II.
This completes the proof of Theorem 1.
Next we explain how Theorem 1 implies Theorem 2. Let P be an integral convex polygon in MR and let Q an

integral convex polygon whose edges are parallel to some edges of P. We assume that corresponding parallel edges
have the same inner normal directions. In other words, there exists an injective map from the set of all edges of Q to the
set of all edges of P such that the corresponding edges are parallel and have the same inner normal directions.

Let ðX; LÞ be the polarized toric surface described in Section 2. Set� the fan of N defining X, that is, X ¼ TNembð�Þ.
The polygon Q also defines a polarized toric surface ðX0;BÞ, where X0 ¼ TNembð�0Þ. By assumption we have
�0ð1Þ 
 �ð1Þ. Since these two fans are complete, we can define a morphism of fans f : ðN;�Þ ! ðN;�0Þ by the
identity map of N. Then f �B is a globally generated line bundle on X such that �ðX; f �BÞ has a basis
feðmÞ;m 2 Q \Mg. Thus we can apply Theorem 1 to L and f �B.

We remark that this is true only in dimension two. Because �ð1Þ does not determine a fan � in higher dimensions.
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4. Gorenstein Toric Varieties

Since a toric variety is Cohen-Macaulay, X has the dualizing sheaf, which is a submodule of k½CðvÞ \M� generated
by feðmÞ;m 2 ðInt CðvÞÞ \Mg on UðvÞ. Thus UðvÞ is Gorenstein if and only if ðInt CðvÞÞ \M ¼ m0 þ CðvÞ \M for
some m0 2 M (see Section 3.2 [9]). Let D ¼

P
i Di be all TN-invariant divisors on a Gorenstein toric variety X. Then

the canonical divisor of X, which is a Cartier divisor by definition, is a Weil divisor �D ¼ �
P

i Di.
Following Mumford [6], we call an ample line bundle L normally generated if the map

�ðLÞ�k �! �ðL�kÞ

is surjaective for all k � 1. If an ample line bundle is normally generated, then it is very ample. We know that an ample
line bundle on a toric surface is normally generated (see [5] Lemma 1.6.3). We also know that an ample line bundle on
a nonsingular toric variety is very ample (cf. Corollary 2.15 [9]).

On the other hand, we know examples of ample but not very ample line bundles on Gorenstein toric 3-folds, whose
adjoint bundles have no global sections. For example, P ¼ Convf0; ð1; 0; 0Þ; ð0; 1; 0Þ; ð1; 1; 2Þg defines a polarized
Gorenstein toric 3-fold ðY ; LÞ. We can easily see that L is not very ample and �ðLþ KY Þ ¼ f0g.

In contrast we have the following proposition.

Proposition 1. Let Y be a Gorenstein projective toric variety of dimension three. Let L be an ample line bundle on Y

such that Lþ KY is generated by global sections. Then L is very ample.

Before proving the Proposition we remark a property of integral polygons near vertices. Let F be an integral convex
polytope of dimension two and v a vertex. Then the semigroup ðR�0ðF � vÞÞ \M is generated by ðF � vÞ \M. More
precisely, we can find m0;m1; . . . ;mr 2 F \M such that fmi � v;mi�1 � vg is a basis of ðRFÞ \M ¼� Z

2 and that the
cone R�0ðF � vÞ is decomposed into a union of cones R�0ðmi � vÞ þ R�0ðmi�1 � vÞ (i ¼ 1; . . . ; r).

Proof of Proposition 1. Set P the integral convex polytope of dimension three corresponding to the polarized toric
variety ðY ; LÞ. The condition �ðLþ KY Þ 6¼ 0 implies that ðInt PÞ \M 6¼ ;.

Take a vertex v of P and a face F of dimension two containing v. Consider the cone CðvÞ :¼ R�0ðP� vÞ. Since Y is
Gorenstein, ðInt CðvÞÞ \M ¼ m0 þ CðvÞ \M for some m0 2 M. Since Lþ KY is generated by �ðLþ KY Þ, we see that
m0 2 Int P. Since ZðF \MÞ ¼� Z

2 and since we may write M ¼� ZðF \MÞ 	 Z, we may choose a coordinate system
ðx; y; zÞ so that v is the origin, F is contained in the plane fz ¼ 0g and that P is contained in the first quadrant
fx; y; z � 0g. Since Int CðvÞ contains a lattice point with its coordinate z ¼ 1, the point m0 has the coordinate z ¼ 1,
hence, the semigroup ðR�0ðm0 � vÞ þ R�0ðF � vÞÞ \M is generated by m0 � v and ðF � vÞ \M. By taking all faces
containing v, we see that the semigroup CðvÞ \M is generated by ðP� vÞ \M. We may apply this argument to all
vertices, and we know that L is very ample. �

A Gorenstein projective toric variety X is called Fano if the anti-canonical divisor �KX is ample. From Proposition 1
we see that the anti-canonical divisor on a Gorenstein toric Fano 3-fold is very ample. By applying Theorem 1 we
have more.

Proposition 2. Let X be a Gorenstein toric Fano variety of dimension three. For the anti-canonical line bundle
L ¼ OXð�KXÞ and a globally generated line bundle B, the multiplication map

�ðLÞ � �ðBÞ �! �ðL� BÞ ð3Þ

is surjective.
In particular, the anti-canonical bundle on a Gorenstein toric 3-fold is normally generated.

Proof. We have a short exact sequence

0 ! OX ! L ! LjD ! 0:

By taking global sections and tensoring with �ðBÞ we have a diagram

0 ! �ðOXÞ � �ðBÞ ! �ðLÞ � �ðBÞ ! �ðLjDÞ � �ðBÞ ! 0

# # #
0 ! �ðBÞ ! �ðL� BÞ ! �ðL� BjDÞ ! 0

ð4Þ

Since the vertical arrow in the left hand side is isomorphic, we need to show that the vertical arrow in the right hand
side is surjective.

Now set P the integral convex polytope in MR :¼ M �Z R ¼� R
3 corresponding to the polarized toric variety ðX;LÞ.

And let Q be the integral convex polytope in MR corresponding B. Then Pþ Q corresponds to L� B. Since �ðBÞ ¼
�ðL� B�OXðKXÞÞ has a basis feðmÞ;m 2 ðIntðPþ QÞÞ \Mg and since h1ðBÞ ¼ 0, �ðL� BjDÞ has a basis
feðmÞ;m 2 ð@ðPþ QÞÞ \Mg.
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For any m 2 ð@ðPþ QÞÞ \M, we can find a face Fi 
 Pþ Q of dimension 2 containing m, which corresponds to an
irreducible TN-invariant divisor Di. And �ðL� BjDi

Þ has a basis feðmÞ;m 2 Fi \Mg. Since LjDi
is ample and BjDi

is
generated by global sections on a toric variety of dimension 2, from Theorem 1 we can find f1 2 �ðLjDi

Þ and f2 2
�ðBjDi

Þ such that eðmÞ ¼ f1 � f2.
Since the restriction maps �ðLÞ ! �ðLjDi

Þ and �ðBÞ ! �ðBjDi
Þ are surjective, we have the surjective map �ðLjDÞ !

�ðLjDi
Þ and elements ~ff 1 2 �ðLjDÞ; ~ff 2 2 �ðBÞ with ~ff 1jDi

¼ f1; ~ff 2jDi
¼ f2. Then we prove that the vertical map in the

right hand side of (4) is surjective, and we have that the map (3) is surjective. �

We remark that in the proof of Proposition 2, we can exchange the assumptions on L and B. Then we have the
following.

Proposition 3. Let X be a Gorenstein projective toric variety of dimension three with nef anti-canonical divisor.
Then for any ample line bundle A on X, the multiplication map

�ðOXð�KXÞÞ � �ðAÞ �! �ðOXð�KXÞ � AÞ

is surjective.
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