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A statistical manifold associated with a correlated walk (CW) model is examined by noticing a non-Riemannian curva-
ture, called the a-curvature, as well as the Riemann curvature. Dynamical characteristics of the Riemann curvature and
the a-curvature are discussed to have a close relation to the stability of the CW system. The statistical manifold is also
found to be asymptotically flat in the meaning of the a(=1)-curvature, and also the jump probabilities characterizing the
CW model is shown to have relation to a symmetry of the statistical manifold. Moreover a forecast is given about the
statistical manifolds of n-step correlated-walk models and nonlinear models, and also such time-developing statistical
manifolds are shown to be very analogous to the geometrical structure of Newton-Cartan theory of gravity.

1 Introduction

Many researchers tried to introduce the notion of distance into the state spaces of equilibrium thermodynami-
cal systems such as the 7" — u space (Ruppeiner (1979, 1995), Janyszek (1986, 1990), Janyszek and Mrugala
(1989, 1990), Ruppeiner and Davis (1990), Ginoza (1993)). They had an interest mainly in the metric tensor and
the Riemann curvature. A noteworthy result is that the Riemann scalar curvature largely increases near phase
transition points. This fact led some researchers to interpret the Riemann scalar curvature as a measure of unsta-
bility or fluctuation.

Recently we proposed two differential-geometrical approaches to the time development of non-equilibrium
systems (Obata, Hara and Endo (1992)). One approach depicts the time development by the motion of a point
in a statistical manifold, and the other one by the motion of a statistical manifold itself.

The former approach showed that the Uhlenbeck-Ornstein process is a geodesic motion in the statistical
manifold of negative constant curvature. This viewpoint has been further developed by other researchers
(Nakamura (1993), Fujiwara and Amari (1993)).

On the other hand the latter approach showed that a D-dimensional random walk (RW) accompanies the ex-
pansion of a 2D-dimensional sphere. As a step time N increases, the sphere expands with the radius of 2vVN
from the singular state of zero radius to the flat sphere of infinite radius. In other words the curvature tensor
fades away as 1/N. We regarded this decrease behavior of the curvature tensor as a geometrical representation
of approach from an initial unstable state to a stable equilibrium state. This interpretation is consistent with the
results for equilibrium systems (Ruppeiner (1979, 1995), Janyszek (1986, 1990), Janyszek and Mrugala (1989,
1990), Ruppeiner and Davis (1990), Ginoza (1993)): the curvature for stable equilibrium systems becomes small.

In successive papers (Obata, Hara and Endo (1994a, 1994b)) we extended the latter approach from the RW
model to a correlated walk (CW) model. The statistical manifold associated with the CW model is spanned by
two parameters representing the jump probabilities of the CW model. We there studied the Riemann scalar cur-
vature of the CW manifold, and showed that the time development of the CW produces inhomogeneous expan-
sion from a spherical surface of R = 1/2 to a saddle surface of R = —1 through an era of violent oscillation.
Such behavior of the Riemann scalar curvature was shown to be well understood by the terms of ‘stability’ and
‘order parameter’ of stochastic processes.

In the present paper we examine the o-curvature of the CW model as well as the Riemann curvature. The
statistical manifold is also found to be asymptotically flat in the meaning of the o:(=1)-curvature. This geometri-
cal characteristic of the CW model is common to equilibrium thermodynamical systems. Moreover the jump
probabilities characterizing the CW model are shown to be a preferred coordinate system in the CW manifold.
Finally on the results about the RW model and the CW model a forecast is given about the statistical manifolds
of n-step correlated-walk models and nonlinear models, and also such time-developing statistical manifolds are
shown to be very analogous to the geometrical structure of Newton-Cartan theory of gravity.
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2 Statistical manifolds

We here give a brief summary of statistical manifold (Amari (1985)). In particular, the decomposition of the
2-dimensional a-curvature into three scalars will play an important role in the next section.

Note that we follow the Misner-Thorn-Wheeler convention for the notation of connection coefficients and
curvature tensors (Misner, Thorne and Wheeler (1973)).

Let S = { p(x, 8)} be a parameterized family of probability density functions p(x, ), where x is a random
variable and 6 = (@, - - -, ") is a n-dimensional parameter. An element of S, that is, a probability density func-
tion is specified by the parameter 6. In other words the parameter 8 is a coordinate system on S. At every point
there exists a tangent vector space Ty, that is represented as a linear combination of n coordinate-differential
operators 8; = 8/96°, i=1,---, n:

To={AlA = A'y;}. @

In the statistical manifold S, one can construct another vector space, called the 1-representation of the 7%, that is
isomorphic to the tangent vector space T,. It is spanned with n partial derivatives d;/(x, 8) of the function
I(x, 0) = Inp(x, 0):

TP = {A(x)|A(x) = A'3:l(x, 6)}. @

For any random variable A(x), we have E[A(x)] = 0. The symbol E[ - ] is the expectation with respect to the
distribution p(x, 6).
The inner product of two tangent vectors is defined by

g(A, B) = E[A(x)B(x)] = g;A'B’ 3
with
9;5(0) = E[9;1(x, 6)9;1(x;0)] = —E[0;9;/(x, 0)]. )
The last equality is due to the normalization condition of probability. The inner product is invariant under the
transformation of the coordinate # and also under the transformation of the random variable x.
For a function f and a tangent vector A, we can define the directional derivative V4 f of ftoward A by A(f).
The derivative satisfies the linearity condition and the Leibnitz condition.
For a vector field B and a tangent vector 4, one can introduce a directional derivative V4B of B toward A4. If
one require the directional derivative to be invariant not only under the transformation of the coordinate 8 but

also under the random variable, the derivative is unique except for a constant «. The derivative V4B is in-
troduced through the inner product

g(V4B, C) = E[(ABI + -1—23,4131)01]. )

The components

1
Tije = 9(V5,0), 0:) = E[(Bjakl + T‘-x' @lﬂﬂ)(’);l] 6)

are called the «w-connection coefficients.
If necessary, we express a value of « by superfix such as vV, I (,-7,)5,- -+. In case of o = 0, the o connection
reduces to the Levi-Civita connection:

F'(‘gl)c = 1/20xgi; + 9;9i — 8igix)- )

It is often useful to decompose the o-connection as follows:
l—« o
Iy = :(jl'l)c"'—z—"]}jk:rg?/)c—‘iﬂjk (®

with
T = E[0;10;10,1]1 = —E[0;9;0,1] — E[(3;1)(9;0¢!) + (3;1)(0x0:1) + (8x1)(3:9;1)]. &)
The tensor 7 is completely symmetric. The last equality is due to the normalization condition of probability.
For three vector fields A, B, and C, the successive derivative V4V Cis not equal to the inverse-ordered deriva-

tive VpV4C in general. An useful measure of the non-commutativity is obtained by subtracting from the differ-
ence vector [V4, Vz]C the contribution due to the non-commutativity of 4 and B:

R(A, B, C) = R(A, B)C = [V4, V3]C — 0y, v,C. 10)
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Its coordinate components are
R(xs 31, 8;) = R@x, 3)3; = [Vs,, V319, = Rjud; an
with
Riw=&ljy— 3+ 'y I — Tyl (12)
The covariant components R, are given by
Rijw = gimRju = 8Ty — 0 Tijke — (D + T )T + (Dt + 0 Tir ) g (13)

Substitution of eq. (8) yields
2

o =RO _ S o O N % e oo o
Riju = Riju Z(Vk T — Vi Tye) + 79 (TmicTnjt — Tonit Tje)- (14)

The «-curvature tensor is antisymmetric in the last two indices k and /. As for the first two indices i and j,
formula (14) gives an useful decomposition. The «° term, that is, the Riemann curvature tensor is antisymmet-
ric. The «! term is symmetric. The ' term is antisymmetric. In other words, the odd-order term in « is symmet-
ric and the even-order terms are antisymmetric.

Finally we consider algebraic properties of the 2-dimensional a-curvature tensor. It is convenient to introduce
the 2-dimensional completely-antisymmetric tensor 7% (2= vdet[g]). The right-dual operation on the 2-
dimensional a-curvature then produces a second rank tensor:

R;’; = R,'jkﬂ’]kl/z! (15)

The right-dual tensor is equivalent to the a-curvature tensor. Decompose the right-dual tensor into the antisym-
metric tensor Rf};; and the symmetric tensor R{;). The antisymmetric tensor is equivalent to the double-dual sca-
lar of the a-curvature tensor:

*R* = nU/2!R};. (16)
2]
The symmetric tensor R}, have two eigenvalues:
R 1
Rl} =7{Tmce[R("§nn)] * /(Trace[Rm])* — 4det [Rim]/det [gmn]}. a7
2

Therefore if and only if the three invariants *R*, R;, R, are zero, the 2-dimensional manifold is o-flat. A scalar
curvature is usually defined by

R = ¢g%g'Ryu. (18)

This scalar is equal to 2 times the double-dual:
R = 2*R*. (19)
This relation is obtained as follows: Choose a local Descartes coordinate system and we then have 2*R*=

N'Riyum*™/2 = n¥(Rijiz = Rip1)/2 = nYRijiz = Rz — Rupz and R = g*¢/"Riy = ¢™(Rira + Rizie) = Rz +
Rz = Rz — Rana.

3 A statistical manifold associated with a CW model

Our interest is in the statistical manifolds associated with correlated walks. We here treat a simple CW model
proposed by Fujita et al (Fujita (1986)). First we review the CW model.

3.1 CW model

Suppose that a walker moves along a linear lattice of infinite extension right or left with given jump probabili-
ties, which depend on the direction of the previous step. The right and left steps are called steps of type 1 and 2,
respectively. If the last step is of type j, the probabilities of stepping right or left are denoted by p; and g;, with
the normalization condition

The definition of the step probabilities are shown schematically in figure 1, where the steps in question are indi-
cated by full arrows, and the last steps by broken arrows. The dynamics of the walker with correlated steps can
also be represented in a square lattice. [See figure 2]. The walker’s moves towards the left on the linear lattice
correspond to the upward moves of an object on the square lattice.

Let P;(X, Y) be the probabilities of the object arriving at the site (X, Y) with step-type j after N units of
time. The probability of the object arriving at (X, Y) from any direction is
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pj + 4gj =1, j=1,2

Fig. 1. The definition of step probabilities with correlation.
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Fig. 2. Step probabilities with correlation can be read by drawing paths in the X-Y lattice. (This figure is cited from ref.
[15D).

P(X,Y)=P(X, Y)+ P(X, 7). @21
Because of X+ Y=N, we can regard Ps as functions of X and N. The new function is denoted by Q: Q;(X, N)
= Pi(X, Y), Q(X, N) = P(X, Y). Consideration of two successive steps yields the following relatons for P; or
Qo

QX N)=p QX =1, N=1)+pQhX—-LN-1), (@
Q(X,N)=qQi(X,N— 1) + ¢20:(X,N — 1), ()

These are time-development equations for Q;(X, N).
The basic difference equations (22) were exactly solved under the initial condition of Q;(0, 0) = 1 and Q,(0, 0)
= 0 by Chen, Fujia, Okamura and others (See references cited in Fujita (1986)). For other initial conditions one

can solve the basic difference equation through the same technique. Those exact solutions, however, are unneces-
sary in the following.

(22)

3.2 A method of numerical analysis of statistical manifolds
Let S be a set of the probability functions Q(X, N) parameterized by the jump probabilities p; and g;:

S={QX,N)I0<p <1,0< g, < 1}. (23)

Because of the normalization condition (20), each function Q(X, N) in S is specified by a 2-dimensional
parameter 6 = (0!, 8% such as 8 = (p1, q2).

In a standard numerical method of calculating the a-curvature one substitute an exact solution for Q(X, N)
into formulas (6), (9) and (13). We performed the numerical calculation in the quadruple precision of 16 bytes.
But as the calculation involves alternating series of extremely large terms for p; > p, and large N, we could not
obtain reliable results in such cases. Some calculations terminated before N = 100. To evade the problem, we
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successively solved the basic difference equations (22) and their derivatives step by step. We use the coordinate
system (pi, gz) for a while. The coordinate system produces the first derivatives (four equations)

00:(X, N) O(X—1,N—-1) 00:(X —1,N—1)
—_—= X-1,N—-1)+ +
a1 Qu( ) + b pr D2 O
and the second derivatives (six equations)
0°0:(X, N) (X —1,N—-1) 20X —1,N—1) (X -1, N—1)
= 2 + 1 + 2 PR (25 )
0p10p: op1 0p10p: 0p19p
Iterative calculation of the basic difference equations (22), the first derivatives (24) and the second derivatives

(25) gives the a-curvature at each step N through formula (13). Note that the third derivatives of the Q(X, N)in
the first term 9, I';; cancel those in the second term 9,1 7.

R (24)

3.3 a-curvature at N =0, 1, 2

It is possible to analyze the statistical manifold at N = 0, 1, 2 without relying on the numerical method
above.

Suppose that a walker starts from a point at N = 0. We have then the probability distribution function Q(0,
0) = 1 at N = 0. This leads to

gu=gn=gn=0, (N=0). (26)

Hence the N = 0 manifold does not extend to any direction or it degenerates to a point.
At N = 1 the probability functions are given by

00, 1) = g1 0:(0,0) + ¢:0:(0,0), Q(1, 1) = p12:(0, 0) + p20:(0, 0). @7

The two functions, of course, satisfy the normalization condition Q(0, 1) + Q(1, 1) = 1. It is possible to
regard one of the two functions as a coordinate transformation, for instance, 8, = Q(0, 1). We then adopt a
function independent of Q(0, 1) as 82. The new coordinate system produces

1
du = 01(1 _ 91) ’
Thus the N = 1 manifold has no extension to the 2 direction or it degenerates to a line.
At N = 2, the degeneration dissolves, and the manifold then turns to a space of constant curvature. We now
show the fact. It is very cumbersome and troublesome to explicitly calculate geometrical quantities by using the

coordinate system (p;, q;) or its linear transformation. It is convenient to choose as a coordinate system any
two of the probability functions

92 =9gr=0, (N=1). (28)

Q(0,2) = :q:0:(0, 0) + ¢30:(0, 0), (@
0(1,2) = (q1p2 + p1g)Q1(0, 0) + (p2q1 + q212)22(0, 0), (D) 29
0(2,2) = p1Qi(0, 0) + pir:0:(0, 0). ©
For instance, choice of 8! = Q(1, 2) and 62 = Q(2, 2) makes the probabilities reduce to simple expressions:
00,2)=1-06'-062 Q1,2)=06' 02,2 =06~ 30)
These expressions produce the metric components as follows:
9y = E@ilo;l) =T —pa t é&y- 3D
And also we have
15181 20252
T = EGu3,1a4]) = 7 - o "(;i)‘f - JZZQ;" (32)
Equations (31) and (32) lead to
Gie= —Ty, I'i=—1/2Tp (33)

in the coordinate system. If one takes advantage of eq. (33), it is easy to calculate the a-curvature. The calcula-
tion yields
1—0a%1

2 E (9igi — yﬂ!]jk)- (34)

Ry =



116 Obata and Hara

and also

R = » Ri=R,=0. 395)

3.4 Riemann curvature for N = 2

In a recent paper (Obata, Hara and Endo 1994b) we analyzed the time development of the Riemann curva-
ture, that is, the a-curvature of @ = 0. We here review main results.

After N = 2, the time development of the Riemann scalar curvature R depends on initial conditions. Figures
3 are results under the initial condition of Q;(0, 0) = Q,(0, 0) = 0.5. Other initial conditions produced graphs
similar to figures 3.

In an early period, N < 100, the behavior is complicated. Nevertheless we can find a common feature indepen-
dent of the initial conditions. The figures suggest that the curvature oscillates in the region p; + ¢, < 1. We now
note that the R in p; + ¢» « 1 violently oscillates and also that its value is large as compared with that in other
coordinate values. The oscillation is thought to reflect flip-flop motions of such walkers, because p; + g, « 11is
equivalent to g; — 1 and p, — 1. This means that the smaller the value of p; + ¢, is made, the more frequently
the flip-flop steps occur. The larger curvature in p; + g, — 0 is due to the fact that the localization of the
probability function Q(X, N) around the start site x = X — Y = 0 is unstable. In the limit state ( p, qz) = (0,
0), the walker stays forever at x = 0 or x = =1, while in the other states the walker can diffuse to distant sites.
Thus a slight variation around the origin (pi, q2) = (0, 0) produces a large change of the probability function.
In other words the limit state (p;, ;) — (0, 0) is unstable. Thus the unstableness of the limit state is distinctly
reflected by two properties of the statistical manifold: the Riemann scalar curvature near the unstable state is
larger than that of the other states and it also oscillates violently.

In an early period, N < 50, the curvature of a state around (pi, ¢2) ~ (1, 1) rapidly decreases. For instance,
refer to the curve of (pi1, q2) = (0.9, 0.7). The details depend on initial conditions, but the behavior of rapid
decreasing is an universal property. This property can also be understood by interpreting the Riemann scalar cur-
vature as a measure of unstableness. At the start time a walker is localized at a point, x = 0. If the walker is
specified by (pi1, g2) ~ (1, 1), it moves quickly out of the origin, as compared with other walkers. Hence its un-
stable motion near the start time produces a rapid change in the probability function Q(X, N), and conse-

Q1(0,0)=0.5 p1=0.1
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Fig. 3. Time development of the Riemann scalar curvature R plus 1 at some typical coordinate values under an initial
condition Q,(0, 0) = 0.5. The coordinate p, and the initial condition are indicated at the top of each figure. The coor-
dinate g, is shown for each curve.
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quently the curvature is expected to vary by a large amount in time.

Thus in early periods the walkers of (p1, ¢2) ~ (1, 1) as well as (p;, g2) ~ (0, 0) are unstable and the unstable-
ness appears as the noticeable behavior of the Riemann scalar curvature.

Let us note the asymptotic behavior of N — o0, Figures 3 suggest

R - —1+ h(p:, ¢2)/N. (36)

In order to examine the inhomogeneity A(pi, ¢2) in the order of N ~!, we show details of the R at N = 1000 in
figure 4, using the linear transformation

u=(pP+q)/2, v=(p— q)/2. (37

For a fixed u the v varies in the range —0.5 + |# — 0.5] < v < 0.5 — |u — 0.5]. The full lines correspond to
an initial condition, Q;(0, 0) = 1, and the broken lines to another initial condition, Q;(0, 0) = 0.5. Any broken
line of u < 0.8 is omitted, because such a line coincides with the full line of the same coordinate value. The
other initial conditions also produced similar behavior, so we do not show their curves.

Does the dependence on the initial conditions around # = 0.9 at N = 1000 mean that the N ~! term depends
on initial conditions? To answer this question, we calculated the Riemann scalar curvature at later times. Figure
5 shows the curvature in the region u = 0.9 at N = 1000, 3000, 5000 under two typical initial conditions Q(0,
0) = 1, 0.5. The full lines, Q;(0, 0) = 1, gradually approach the broken lines, Q,(0, 0) = 0.5. Hence we con-
clude that the inhomogeneity A(u, v) in the N ~! term is

(1) independent of initial conditions;

(2) almost independent of the difference coordinate v = (p; — ¢2)/2, the asymmetry between rightward
steps and leftward steps;

(3) monotonically decreasing with respect to another coordinate # = (p; + ¢2)/2, the mean of the diagonal
components of the transition probabilities.

Note that the coordinate u represents the orderliness of walks. In fact, # — 1is equivalent to p, = 0O and ¢, —
0, so a walker of u ~ 1 tends to walk smoothly and regularly. We may then regard the coordinate u as a
‘regularity parameter’ or an ‘order parameter’. Hence the third property of the inhomogeneity function
represents that the Riemann scalar curvature R is small for ordered states in the asymptotic time region.

N=1000

10—1 T T I | 1 I l .

g U=(p+%2)/2 1

i - / J

10_25_ 0.2 -
: : 0.4 0 j
o - 0.6 .
10_3&— 0.7 _E

E 0.8 ]

10_4:— L L L

-0.5 0.5

vV =(Py —qf2>/7—

Fig. 4. The right-left asymmetry (p, — g,)/2 versus the Riemann scalar curvature R plus 1 at N = 1000 for various
values of (p; + g,)/2. The full lines correspond to Q,(0, 0) = 1, and the broken lines to Q;(0, 0) = 0.5.
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U=(Pi+%,)/2 = 0.9
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Fig. 5. The right-left asymmetry (p; — q,)/2 versus the Riemann scalar curvature R plus 1 at N = 1000, 3000 and 5000
for (p; + g;)/2 = 0.9. The full lines correspond to Q,(0, 0) = 1, and the broken lines to Q,(0, 0) = 0.5.

3.5 «a(=1)-curvature for N=2

We have seen in section 2 that the 2-dimensional «-curvature tensor can be decomposed into three curvature
scalars Ry, R; and R. Let us now examine the time development of the curvature scalars in the case of o = 1.
As for the CW manifold, there is a symmetry between R; and R5;

Ri(p1, @2) @y = Ra(p1, @) ,0)- (38)

We have ascertained this relation through the numerical calculation of double precision at 5 X 5 points (pi, q2)
e Ns X N5, N5 = {0.1,0.3,0.5,0.7, 0.9}, each step in N < 100, every 100 steps in 100 < N =< 1000, every
1000 steps in 1000 = N = 5000. The numerical calculation at many sites and many steps suggests that the sym-
metry is independent of sites and steps. We should note that the symmetry is inherent in the coordinate system
(P15 g2). In other words, the coordinate system is a preferred coordinate system in the CW manifold.

Figures 6 show the time development of R and R, at some sites in the preferred coordinate system. The R, can
be read by using the symmetry (38). The full lines stand for +R and the broken lines do for —R.

In the asymptotic region, R, monotonically decreases and converges to zero. So R; behaves in the same way.
However, the R monotonically decreases in a region and increases in another region. Thus it is difficult to inter-
pret the nonRiemannian scalar curvature R as a measure of unstability.

We should note a characteristic of the nonRiemann curvature scalars;

R’ R19 RZ - 0’ (N_) (13)_ (39)
This is equivalent to
R{U—0, (N—- o). (40)

Therefore we can conclude that the CW manifold is flat in N = c in the meaning of o = 1.

The o = 1 flatness is the same characteristic as the statistical manifold associated with any equilibrium ther-
modynamical system, whose distribution function belongs to the exponential family. The exponential family is
known to be flat at @« = 1 (Amari (1985)). Some examples of o« = 1 flat and homogeneous manifolds are known;
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R©® = —1 for normal distributions N(u, o) and R® = 0 for classical ideal gases. Their probability functions
belong to the exponential family. We showed R® — —1 for the CW manifold. Comparing the CW manifold
with the geometry of N(u, o), we might guess that the distribution functions of the CW manifold approach to
the normal distributions. However, the guess seems to be wrong, because Q(X, N) is known to have a sharp
peak, called the runaway component (Fujita (1986)), at X ~ N for p; ~ 1, p, ~ 1 under the initial condition
0:1(0,0) = 1 and 0,(0, 0) = 0.
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Fig. 6. Time development of the a(=1)-curvature invariants R and R, at some typical coordinate values under an initial
condition Q,(0, 0) = 0.5. The coordinate p, and the initial condition are indicated at the top of each figure. The coor-
dinate g, is shown for each curve. The full lines are for +R and +R,, and the broken lines for —R and —R,.

4 Perspectives

4.1 A prediction to n-step correlation walks

The Riemann scalar curvature of the D-dimensional RW statistical manifold approaches to (2D-1)D/N for
large step number N (Obata, Hara and Endo (1992)). In the CW model with the correlation of successive two
steps, the asymptotic form of the Riemann scalar curvature is given by eq. (36). Upon these results we now infer
the asymptotic behavior of the Riemann scalar curvature about CW models with the correlation of successive n
steps. If successive steps are strongly correlated, the motion will be orderly. Hence if the Riemann scalar curva-
ture is a measure of unstability, we can expect that the Riemann scalar curvature has the asymptotic form of

R® > —Cy+ h/N. 41)

The Cy is inferred to be a monotonically decreasing function in the number n of correlated steps. And also the
manifold is anticipated to be asymptotically «(=1)-flat.

4.2 Generalized models

The CW model in section 3 and its generalizations to n-step correlation walks are described in terms of linear
equations with constant coefficients. There are many further generalized models in literature. For instance,
Hara et al. introduced memory functions in random walk processes (Hara (1979), Hara, Choi and Chung (1987),
Hara, Obata and Lee (1988)). Then the time development equations for probability functions turn out to be non-
linear. They discussed the fluctuation and bifurcation of paths in the generalized models.

If the Riemann scalar curvature is a general measure of unstability, we might expect the curvature to be useful
also in discussing the fluctuation and bifurcation of paths. And also we might obtain some geometrical charac-
teristics about parameters of the models by examining the a-curvarue.

One should note that the method of numerical analysis discussed in section 3.2 applies to nonlinear equations
as well as linear equations.

4.3 Newton-Cartan-like geometrical structure

The time development of a nonequilibrium process leads to a stack of statistical manifolds parameterized by a
discrete time or a continuous time. This stack should be called to be a stratified space. Each layer, of course, has
the geometrical structure of a statistical manifold. In addition we note that different layers have relation to each
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other. Because the time development equations for probability functions relate a point at a layer, that is, a
probability function to a point at a neighboring layer.

We should remark that this structure is remarkably analogous to the Newton-Cartan theory of gravity (Mis-
ner, Thorne and Wheeler (1973), Trautman (1965)). To see it, we review the gravitational theory in brief.

In Newton dynamics, the equation of motion for a test particle

dx/ N 0d
drr = axl
is usually interpreted as an equation of describing curved paths in Euclid space. Newton-Cartan theory regards
the equation of motion as an equation defining geodesics [#(1), x/(1)] in a curved space. The clock carried by a

test particle ticks an universal time ¢ (or a constant multiplication A = af + b). So we can rewrite the equation
of motion as

(42)

d d*/  o®(drt\?
= — =0. (43)

=% atad\m

As compared with the equation of geodesic, we can read the connection coefficients

; 0P
I'ep= port the other components = 0. (44)
The connection coefficients yield the affine curvature tensor
R} i the oth ts=0 (45)
=— o omponents = 0.
o0 = Sk e other componen

The Ricci tensor R.s (=R4,5) is then

Ry = A9. (46)
Hence the equation for Newton potential @ can be transformed into a spacetime equation,
R = 4nGp. “7

The short review shows that the fundamental geometrical structure of Newton-Cartan spacetime is character-
ized by the universal time, the connection given by the equation of motion and the 3-dimensional Euclid metric.
One should note that the metric is not a spacetime metric but a space metric. As compared with the statistical
manifold of correlated walks, we can read the following correspondence.

Newton-Cartan theory CW statistical manifold

universal time ¢ step time N

equation of motion for a test particle time development equation for probability functions
3-dimensional Euclid metric information matrix (+« curvature)

The equation of motion for a test particle produces an affine connection in the Newton-Cartan spacetime. So
we expect from the correspondence table that the time development equation for probability functions produces
a geometrical object in the stacked statistical manifold. However, it is not straightforward to read the geometri-
cal object from the correspondence, because a point in the statistical manifold and the stacked statistical
manifold is a probability function. And also the time development equation for the probability function is not a
differential equation of 2nd rank but a difference equation of 1st rank.

What are geometrical objects produced by the time development equation for probability functions?

REFERENCES

[11 Amari, S., (1985), “Differential-Geometrical Methods in Statistics (Lecture Notes in Statistics 21)’’, (Springer, Berlin).

[2] Fujita, S., (1986), ‘“Statistical and thermal physics part I. Probabilities and Statistics, Thermodynamics and Classical
Statistical Mechanics’’, (Krieger: Malabar, FL), pp39-56, 467-471.

[3] Fujiwara, A. and Amari, S., (1993), ‘‘Dualistic Dynamical Systems in the Framework of Information Geometry’’,
METR93-17, Univ. Tokyo, 1-23.

[4] Ginoza, M.,(1993), “RIEMANNIAN GEOMETRY OF EQUILIBRIUM THERMO-DYNAMICS IN A LIQUID
MIXTURE”’, Rep. Math. Phys. 32, 167-174.

[5]1 Hara, H., (1979), ‘““Generalization of random-walk process’’, Phys. Rev. B. 20, 4062-4098.

[6] Hara, H., Choi, S. D., and Chung, C., (1987), ““‘A THEORY OF NOISE BASED ON GENERALIZED RANDOM
WALKS”, Physica A 144, 481-494.

[71 Hara, H., Obata, T., and Lee, S. J., (1988), ‘‘Fluctuations and bifurcations of the paths described by generalized ran-



Correlated-Walks Seen from the Viewpoint of Information Geometry 123

(8]

9]
[10]
(11]
[12]
[13]
[14]
[15]
[16]
(17]
(18]
(191

[20]

dom walks’’, Phys. Rev. B 37, 476-486.

Janyszek, H., (1986), ‘‘On the Riemannian metrical structure in the classical statistical equilibrium thermodynam-
ics’’, Rep. Math. Phys. 24, 1-10.

Janyszek, H., (1990), ‘‘Riemann geometry and stability of thermodynamical equilibirium systems’’, J. Phys. A:
Math. Gen. 23, 477-490.

Janyszek, H. and Mrugala, R., (1989), ‘“Riemann geometry and the thermodynamics of model magnetic systems’’,
Phys. Rev. A 39, 6515-6523.

Janyszek, H. and Mrugala, R., (1990), ‘Riemann geometry and stability of ideal quantum gases’’, J. Phys. A: Math.
Gen. 2, 467-476.

Misner, C. W., Thorne, K. S., and Wheeler, J. A., (1973), “GRAVITATION”, (Freeman, San Francisco), Chapter
12.

Nakamura, Y., (1993), ‘‘Completely integrable gradient systems on the manifolds of Gaussian and multicomponent
distributions’’, Jap. J. Industrial and Appl. Math. 10, 179.

Obata, T., Hara, H., and Endo, K., (1992), ‘‘Differential geometry of nonequilibrium processes’’, Phys. Rev. A 45,
6997-7001.

Obata, T., Hara, H., and Endo, K., (1994), ‘*“‘Dynamical behaviour of a statistical manifold associated with correlated
walks’’, J. Phys. A: Math. Gen. 27, 5715-5726.

Obata, T., Hara, H., and Endo, K., (1994), ‘‘Dynamics of Correlated Walks from the Viewpoint of Differential Geo-
metry’’, Proc. Int. Conf. on STATISTICS IN INDUSTRY, SCIENCE AND TECHNOLOGY, 96-101.
Ruppeiner, G., (1979), ‘“Thermodynamics: A Riemannian geometrical model’’, Phys. Rev. A 20, 1608-1613.
Ruppeiner, G., (1995), ‘‘Riemannian geometry in thermodynamic fluctuation theory’’, Rev. Mod. Phys. 67, 605-659.
Ruppeiner, G. and Davis, C., (1990), ‘‘Thermodynamic curvature of the multicomponent ideal gase’’, Phys. Rev. A
41, 2200.

Trautman, A., (1965), ‘‘Foundations and Current Problems of General Relativity, (Lectures on General Relativity,
Brandeis 1964 Summer Institute on Theoretical Physics, vol. I)’’, (Prentice-Hall, N.J.).



