Interdisciplinary Information Sciences, Vol. 13, No. 1, pp. 1-6 (2007)

An Explicit Formula of the Newman-Coquet Exponential Sum
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In this paper, we first give an explicit formula of the exponential sum of sum of digits with complex coefficients.
As an application of this formula, we obtain a simple expression of Newman-Coquet summation formula related to
the number of binary digits in a multiple of three.
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1. Introduction

Let p be a positive integer greater than 1 and denote the p-adic expansion of n € N by n = leo a;i(n)p', where
ai(n) € {0,1,...,p— 1}. We set

s(p,n, 1) = Z Ljiemy=0 ()

=0
fori=1,2,...,p—1and
s(n)y = (s(p,n, 1),5(p,n,2),...,s(p,n, p — 1)).

We define the exponential sum:

N—1 N—1
p—1
F(§, N)(,;) = Z e&sp) — Z eZl:l SisCpuml)
n=0 n=0

for§ =(&1,...,5-1) € C?~!and N € N. In previous paper [7], we gave an explicit formula of F(&, N), for & € RP!
by using the distribution function of the multinomial measure.
For the case p = 2, set s(n) = s(2,n, 1) and let

N-1
D(N) =) (=)™,

n=0
In [5], Newman noticed that an examination of the multiples of three, 3,6,9,12,15,18,21,24,27, - - - written to the
two base
11,110,1001,1100,1111,10010,10101,11000, 11011, - - -

shows a definite preponderance of those containing an even number of one digits over those containing an odd number.
Newman obtained following inequalities:

o

3
— < D(N)N™* < 5.3%,
20

log3

where o = % This estimate shows that this strange behaviour persists forever. More precisely, Coquet [1] obtained
0g

the following theorem.

Theorem (Coquet [1]).

N log N
L vy = ") yep(log
3 log4
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where n(N) = { ?_1)3(31‘/—1) Z: x ii Z;Zn and F is a continuous nowhere differentiable function of period 1.

55 *
2. limsupD(N)N™* =supF = — i = 1.601958421...
N—oo 3 65

23
lim inf DOV)N~ = inf F = ‘Tf — 1.154700538.. ..
—00

In this paper, we shall generalize the distribution function L(r,-) of the multinomial measure with complex
parameters, and give a simple explicit formula of F(§ N ) via a generalized L(r, -). Next, as an application of this one,
we shall give an explicit expression of D(NV).

2. Preliminaries

Assume that we are given a positive integer p greater than 1. Let I = [y = [0, 1] and
L =1j/p".G+D/p", j=0,1,....p"=2,
In,p”—l = [(Pn - 1)/pn’ ]]
forn=1,2,3,...Letr = (ro,r1,...,r,—2) be a vector such that 0 < r, < 1 for/=0,1,...,p — 2 and Z;’:_Ozr; < 1land
set r,_p =1-— Z;:oz r;. The probability measure w, on [ defined by
(D wr(lntr,pjrt) = ripe(yj)

forn=0,1,2,...,j=0,1,...,p" — 1,1 =0,1,..., p— 1, is said to be a multinomial measure. If r, = 1/p for all [, u,
is the Lebesgue measure on [0, 1] and otherwise it is singular with respect to the Lebesgue measure. We denote the
distribution function of w, by L(r,-):

L(r’x) = /'Lr([O,-x])s X € I'
Following our previous paper [9], we summarize some fundamental properties of L(r, ).

Lemma 2.1 ([9, Lemma 2.1.]) For a given r = (ro,1,...,¥,—2) and r,_; as above, L(r,-) satisfies the following
system of infinitely many difference equations:

k1 i+ k i+ 1 '
1P ) =5 ) -l (5) ()} =o
() f(0)=0, f(1)=1,
n=0,1,2,..., j=0,1,...,p" — 1,

k=0,1,....p—1.

Lemma 2.2 ([9, Lemma 2.2.]) Provided that f is continuous, the system (2) is equivalent to the following functional
equations:

1
rof(px), 0<x<-,
p
1 2
rf(px — 1)+ ro, - <x=<-,
4 P
(3 Sx) = k-1 k k+1
rf(px =K+ Y ri, S<x<—o,
i=0 P p
p—2 p—l
i f(px—(p =)+ Y _ri, — - sxsl
i=0

Moreover, by Hata [2, Corollary 6.6], we have the following lemma.

Lemma 2.3 ([9, Proposition 2.1.]) L(r,-) is a unique continuous solution of (3), and hence of (2).

3. Results

Let an integer p > 2 be given. We now consider the case 7 € C”~! and treat the system of infinitely many difference
equations (2) with r = (rp, 71, ...,7,-2) such that
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4@ neC, 0<|rnl<lforl=0,1,...p—2, 0 < |1 — T

Letr,_y =1~ Z;:oz r;. Then we can immediately prove that Lemma 2.2 holds and the functional equation (3) has a
unique continuous solution. Therefore, under the condition (4), we set L(r, -) the continuous solution of (3) anew. We
can also get an exact form of the k-th derivative of L(r,-) with respect to the parameters r; / =0,1,---,p—2)ina
similar manner to [9, Section 5.].

Theorem 1 Suppose that § = (&,...,§,-1) € CP~! satisfies the condition |14+ 5 + ...+ ¢ > 1 and N € N,
then we have

1 1
®)) F(&N)y) = r([)t1+1 L(r, pl—{z}>’

where
1 ebl
= and 1 =
1+ et 4.+ ebrt ! 1+ et 4+ .o 4 ebrt
forl=1,2,...,p—1, and {t} denotes the fractional part of t = log, N.

1o

Theorem 2 For the quantum D(N) in Introduction, we have

1 2 1
_ _ _ 1y 4 Zali+l
®) D) =3 317433 Ret(r )
1 2 1 3 _ log3N
where r = (rog,r1,1) = —,—E,—w—, , W= ——+ £\/—1 (i.e. a cubic root of unity) and t = i. [7] is the
373 3 2 2 log4

integral part of .
Remark 3.1 Since the set {?)N/4[’NJJrl :N=0,1,---} is dense in [1/4, 1], we obtain the next estimates:

lim sup D(N)N™* = max | 2 3% X %ReL(r, x)

N—o0 1/4=x=<
lim inf DIN)N™® = min 2 3* 'x *ReL(r,x)
N—oo 1/4<x<1

We illustrate the graph of g(x) = 2 3%~'x"“Rel(r, x) in Fig. 1.

Fig. 1. gx)

4. Proofs.

Proof of the Theorem 1. As L(r,0) = 0, we have
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1 N
Lromm e
—1
1
L r,n+ —L\r, o
p[t]+1 p[7]+1

Yoo+ 1 A, Yo wmp
pli+! ’ pli+! )
By using (2), we get

L( Zi>() 051’(”)pi + 1) L( Zi>0 (x,-(n)p')
r, = — ry———

p[ll+1 p[f]Jrl

Il
~

=

Il
1M

2

Il
=}

n

(2., eatmp™" )+ o) + 1

(2., xtmp™)p + o)

=L\ T+ —L\r Pl
(Do, cutmp ) p+en(m) + 1 (3o, ctmp™)p + en(m)
= Fay(n) L r, — p[f] —L r, — p[T]
(X entmp™ )+ oatm) + 1 (2. eutmp™ ) p + )

—Llr

= Tagmlern) | L\ T

>

p[tlfl p[flfl

To iterate this procedure, we find

n+1 n
M pli+ —En pli+ = TagmTar(m) "~ Fagg(n)

[+1-3 0 spand) PPADSa2) =)
=r, . .

Therefore, we have

1 Nl [4+1-3 " stpand) ,
I =1 LY s(pan,1) s(p,n,2) . s(p.,n,p—1)
L<r’pl—{tl> = ZO Ty r r o

n
N—1 s(p.n,1) s(p.n,2) s(p,n,p—1)
— Ay (L e R iall
O =\ ro o

1 ek

Setting ro = 1+ ef + .00 4 b and r; = 1+ef 4o 4 e

for/=1,2,..., p— 1, we obtain the Theorem 1.
O

Proof of the Theorem 2. As
Z (_1)Y(n)wn — Z(_l)f(3}1) + Z(_1)3(3n+1)w + Z(_l)s(3n+2)w2,
n<3N n<N n<N n<N

we have

Re Z(_DS(H) no_ Z(_1)5(3n) Z( 1)3(3n+1) Z( 1)3(3n+2)

n<3N n<N n<N n<N

3 1 s(on s(on s(on
= 5D = 5 D {4 (DO 4 (e

n<N

Therefore, we obtain

D(N) = Z( 1)s(n)+ ReZ( 1)?(11) n

n<3N n<3N
Set the 4-adic expansion of n € N by n = Zizo a;(n)4, where a;(n) € {0,1,2,3}. Then we have

W' = w2 @D S ann) s D250 2)+35(4n.3)

On the other hand, as
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s(n) =s(4,n,1) + s(4,n,2) + 2s(4,n,3),

we get

(_ 1 )s(n) w' = (_ 1 )s(4,n, 1)+s(4,n,2)+2s(4,n,3) ws(4,n, 1)+25(4,n,2)+3s(4,n,3)

— (_ w)s(4,n,l)(_ w2)$(4,n,2) .

Therefore, we have

3N—1

3N—1

3
Z (_l)s(n) n_ Z eZ[:l gsnl) _ F(S’ 3N)(4)

n=0

n=0

where £, = log(—w), & = log(—w?) and & = 0. Since

1

ro = =, r
0 1+g‘§l +e§2+e§3 3 !
e w?
rp = = 5>
1+ e51 + 52 + e 3

we obtain our formula by Theorem 1.

5

- 1 4 €8t + €52 + €5 -

r3

k)

w
3

e 1

= ]+e<&.l+e§2+e<&.3 25’

O

Remark 4.1 For z € C, let 7 be the conjugate complex. Then by Lemma 2.2, we know the following functional

equations hold:

(N L(r,x) =

_ (1 w w?
forr=G,—5.,—%) and

®) L(r',x) =

w

__1 | —B) — w | -
ﬂﬂ—g,ﬂ( —ﬂ)——g,( - PB=-

L(r,x) =

L(r,x) =

1
L4

2

1L(/4)
—L(r, 4x
3

BL(r,2x)

w 1
—EL(r,4x -+ 3

w 1
—?L(r,4x — 2) + g -

Drax—3)+ LY
— r’ J— —_— —_—— —
3 373

T 1

—;L(r,4x—l)—|—§

T A — 1
3 3

D ax—p 4tV
3 3

3

w

3

w
3

w

w

2

w

3

2

3

for ¥ = (%, -3, — %2). It is well-known that above each system has a unique continuous solution and the range

G1([0, 1]) (resp. G»([0,1])) is the Koch curve on the lower half-plane (resp. the upper half-one) of C. Set
By S SV S s ci i

B="7F"=3—% 1. Then, noticing equalities

2

3

1-pBLrFr2x—1)+ B

BL(r, 2x)

1
lf‘oi-xiz’
ifl<x<l,
4~ T2
ifl<x<§,
27 T4
if§<x<1
4="=
zf0<x<1,
- T4
ifl<x<l,
4 T2
ifl<x<é’
27 T4
if§<x<1
4= =

— 1
A=A -p=7,

we can easily show that L(r,x) and L(r',x) satisfy the following systems of functional equations:

(1-BLF,2x—D+p if % <x<l.

Kawamura [4] studied general type of above functional equations and investigated those fractal properties. We finally
remark that Coquet [1] also pointed out that the function F of Theorem 1 concerned with the classical fractal scheme.
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