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Given a sequence {¢;} of bounded functions on the dual group I" of a locally compact abelian group G, we have a family
of Fourier multiplier operators each element of which is made from a component ¢; of the given sequence. On the other
hand, the restrictions ¢;| 4 of ¢; to a subgroup A of I"build Fourier multiplier operators on G/A*. We are interested in
the transference of continuity from the maximal operator constructed by the family of Fourier multiplier operators com-
posed of {¢;} to the counterpart maximal operator corresponding to {¢;|4}. For the study, it is a powerful tool that, if
ke LY(I"), then the maximal operator corresponding to {k*¢;} inherits the strong or weak typeness (p, ¢) from the one
associated with {¢,}. First we give a method of showing it. Our result contains the case p=¢g=1 and our proof is simpler
and more straightforward than the one in [2]. Next we consider the case of G=R” and A =Z", and develop arguments
over Lorentz spaces and Hardy spaces.
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1 Introduction

Let G be a locally compact abelian group with dual group I, and m and u be the Haar measures on G and I,
respectively. For ¢ € L*(I"), the corresponding Fourier multiplier transform is denoted by Ty: Ty f = (¢f )V for
fe LXG), where f means the Fourier transform of f and ¢ does the inverse Fourier transform of g.

When a normed or quasi-normed space X (G) of functions or distributions on G is given, T,f is defined for f
e X(G)NLYG). We are interested in the continuity ot T, as a mapping from X (G) N L%G) equipped with the
topology induced from X (G) to some normed or quasi-normed function space on G.

If ¢ is continuous at every points of a closed subgroup A or I, then the restriction ¢ | A induces a Fourier mul-
tiplier transform T4 on L*(A), where A is the dual group of A and may be identified with the quotient group
G/ H of G by the annihilator H = A* of 4 in G.

Our interest is to ask if T}, inherits the continuity from 7. In the following we study the problem in more
general setting. Let ¢; (j = 1,2, ...) be bounded on I and continuous at each.point in A. We treat the
maximal operator T* = T, = sup, | T,( - )| and the counterpart maximal operator T* = T4, = sup;

| T’¢j| 4(- ). And we shall show that the boundedness of T* is passed down to 7'* in some cases.

To say precisely, we introduce the following notations. For a linear space X (G) of functions or distributions
on G and a function space Y(G) on G, each of which is equipped with a norm or a quasi-norm || - |lx) and
Il - lly), respectively, we define Nx),vi)({#;}) by ‘

Nx@)voy({é; 1) = sup IT*flivey/ I fllxe)s

where the supremum is taken over all non-zero fe X(G)NLXG). In the same way, we also define
Nxrmy,verm{¢;14}) by

Nzimvem{e;1A}) = sup N T*F v/ \F 2/

for the mapping T* from a space X(G/H) of functions or distributions on G/H to another similar space
Y(G/H). When the case of single multiplier is handled, in other words, when the caseof ¢; = ¢ ( = 1,2, ...)
with some ¢ € L®(I") is under consideration, we write them Nx @) vc)(¢) and Nx/m),v/m(¢1A) instead of
Nx@),ve)({$}) and Nxe/m),verm({d14}), respectively.

De Leeuw [8] gets the famous inequality
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Npan,pan(@1Z") < Npsgm,o@n(9)

in the case of G = R" and A = Z". This inequality is extended to the context of locally compact abelian groups
by Saeki [20].

Coifman-Weiss [6, 7] treat this problem as an object to which so called transference method is applicable. Af-
ter that their ideas have been progressed by Kenig-Tomas [17], Kaneko [16], Asmar-Berkson-Bourgain [1] and
Asmar-Berkson-Gillespie [2, 3]. In these works the role of the Fourier multiplier transform 7., corresponding
to k+¢; with some k e L'(I') is important and it is tried and succeeded to have the following inequality

Npoyroy({k*¢;}) < Clkllpary N,y ({) 1)
or
1) Ny k=t }) < ClkllpryNpscy,werc)({651),

where wL?(G) means the weak L?(G) space and C is a constant. Hereafter we use the character C to represent
constants, but they may be different in their occurences. The inequality (1) induces

2) NuGimywreimn({0;1A4}) < CNpey,werey({95})

as well as the strong type cases.

When we try to establish the inequality (1) for p = 1, we face to technically difficult problems which never
arise in the case of 1 < p < + . Untill Asmar-Berkson-Bourgain [1] solved the problems and obtained the ine-
quality (1) forp = 1, G = R"and A = Z", it had been left as an open problem wether Npi&n,wizm(¢) < +©
implies Npim wiian(@1Z") < + o (Pelczynski [19]). Asmar-Berkson-Bourgain’s result was extended to the
case of locally compact abelian groups by Asmar-Berkson-Gillespie [2]. Their method to have (1) for any locally
compact abelian group G and p = 1 is almost as following. First they prove (1) for any compact abelian group
adapting the strategy of Asmar-Berkson-Bourgain. Next they develop some argument over the relationship
among the Fourier multipliers defined on the dual group T, its discretized group I'; and the quotient group I'/ A.
And then they get finally the desired inequality for arbitrary locally compact abelian groups with the aid of the
construction theory for locally compact abelian groups.

In §2, we shall give an alternative proof of (1), where we use the weak type version theorem of Marcinkiewicz-
Zygmund introduced in [12] as a powerful tool. )

The authors are grateful for the late Professor Akihito Uchiyama®* for pointing out the applicability of the
theorem to our task.

To show the heredity of continuity from T} to T}, if we make our way through the transference method re-
fered to above, then there appears a constant in the dominating side like (2). But, in the context of R” and Z*,
Wozniakowski [22] shows

Nusanwran (@1 Z") = Npwn,weiwn(9)

without the existence of any constant in the right-hand side. In §3, we shall improve it such as the form contain-
ing the case of maximal operators

NL(P-")(T")’L(p.A‘)(TH)({¢j I Zn }) = NL(PJ)(R"),L(P-S)(R")({d)j }),

where L") and L9 are the Lorentz spaces on the measure spaces expressed in the each parenthesis. Our result
includes the case p = r = 1 and s = + 0. It asserts that the property of weak type (1, 1) of T* passes to T*.
Fan [9] has already taken related theorems within the frameworks of Lorentz spaces. But his results do not con-
tain the weak type cases.

Fan-Wu [10, 11] study the transmission of the continuity on Hardy spaces and has obtained the strong type
results. We shall give a weak type version of theirs in §4.

2 Convolution theorem

In this section, we give an alternative proof of a theorem in Asmar-Berkson-Gillespie [2] which gives a weak
type (1, 1)-estimate for the maximal operator defined by a sequence of the multipliers convoluted by an
LY(I')-function. We shall give it in a little more general form. For the sake of notational simplicity, we denote
Nr @y ({8;1) by N ¢;1). '

Theorem 2.1 Let G be a locally compact abelian group with the dual group I', and assume that 1 < p < +®©
and 0 < g < +©. Suppose k e L\(I'y and ¢; € L™(I') (j = 1,2,...). Then

NS kxd;}) < CogllkllinanyNSI(1),

* The authors feel more sorry than we can say to inform that Professor Akihito Uchiyama passed away on August 11, 1997.
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where C,, is a positive constant depending only on p and q.
Proof. According to Fatou’s lemma, it is sufficient to prove the existence of a constant C, , depending only
on p and q such that the distributional inequality

Coal kNl NS ;1)
t

3) m({x e GI(M”’f)(x) >t =< ( "f"u«;))q

holds for all # > 0 and fe L?(G)NLYG) with respect to the auxiliary maximal functions M PrI=1,2,
. ) defined by
M) (x) = max | (Tier, f)() 1
We consider the case N{)({¢;}) < o, and take a ¢ > 0 and fix it hereafter.
We assume first that fis continuous and integrable over G, and that the support of the Fourier transform f of

fis compact. Under the assumptions, we get the integrability of both ¢;, f and (k*¢;) f Therefore we may assume
that (M {"f)(x) < o for all x e G. So we define F;(e) by

Fi(e) = {xe GIMPNx) — & < |(Tep /)X }
foranye >0andj=1,2,...,J, and set

Jj—1
Ei(e) = Fi(e), E;(e) = Fi(e)\ L=J1Ei(8) (G=23,...,0).

Then G = U,-J= 1 E;(e) and the right-hand side is a disjoint union. By making use of the decomposition of G, we
define an operator K, by
J

(K:9)(%) = > (T, 9 )X)xE0(X) (g € LXHG)),

j=1
where Xz, is the characteristic function of Ej(¢). Then
MPf)(x) — & < [(KNX) < (Mif)x) (xe G).
Therefore
“@ Mf)(x) = lim 1[(Kf)X)| (xe G).

On the other hand, we can easily observe the equality
(Tiesg, )(x) = S k@)y(x) T, (71)(x)dp(y)
r

holds, because of that the integrabilities of £ and f permit us to change the order of integration in the iterated in-
tegrals appearing in the process of the calculation. Now we introduce a linear operator L. defined by

J
(Leg)(x) = g (T5,9)X)x50(x) (9 € LAG)).

By the inequality |(L.g)(x)| < (T*g¢)(x) and the finiteness of N$)({¢;}), we see that L, is a linear operator of
weak type (p, ¢) and its operator norm is less than or equal to N$)({¢;}). Furthermore the equation

K:)x) = SF kK@)y(x)L:(Pf)(x)du(y)

holds. Applying the Cauchy-Schwarz inequality to the right-hand side, then

1/2
®) (KX = IIkIH’Z{SF|Ls(7f)(X)|2|k(V)|dﬂ(V)} .

We try to replace the L2-norm with respect to the finite measure du.(y) = |k(y)|du(p) in the right-hand side of
(5) with a limit of a discrete /2-norm stated below (10). By the regularity of 1, we have such compact sets I, C I”
as u(I'\I',) < 1/n for any positive integer n. For each n we have the following. Since f is a compactly support-
ed continuous function, there exists a symmetric neighborhood V of 0 in I" such that

©) Sr‘lf(y+ y) —fWNdu@) < 1/n (ne V).

For such a V, we take a symmetric neighborhood U of 0 satisfying U + U C V. Because of the compactness of
I, we can choose a finite covering { Us } of I, each of which has such a form as U; = U + & with some & & I5.
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Let oy =I,NUy, s =T,NWAUIZ{U) (s =2,3,...). Then I, = U, I, s, where the right-hand side is a
finite union of a disjoint family. We select a point y, . € I, from each I, and set g, = vix(Ins)Pnsf- Then
we have the inequality

1/2
@ ) {L lLe(?f)(x)lzlk(V)Wﬂ(y)} = {3 I(Legns)x) 2}

1/2
= {gf ILe(F)x) = 25 Le(ns S IX)1r,, )] zduk()’)} .

Let j be such an integer that x € E;(¢), then
® |Le(P)(x) = 2 Le@ns /)X, (1) = 1 Ty, )| < llslleoll £11,

for y e I'\I,, and, for a point y in some I},

©® LGN = X Lo, )| < n¢>,-nwgr [f@+9) = Fon + ps) 1 dur) < lsll/

holds by reason of (6). The relations (7), (8), (9) and the feature of I', induce the estimate

< {(;llall A1)/ 1 + (12N k) / 232,

1/2
| { I, lLs(?f)(x)lzlk(y)Idu(y)} = {3 1Legns() 12}

This implies the point wise relation

1/2
(10 {X ILe(J"f)(x)Izlk(y)Idu(Y)} = Hm_ {3} 1(Lagna)(x)2}2

This is the replacement aimed for in (5). By making use of (4), (5) and (10) together with Fatou’s lemma, we
have

an m({x e GI(MEf)(x) > t}) < lim inf lim inf m({x ¢ GI{2] [(Legns)(¥) 12372 > t/IIkNI2Y).

Applying the weak version theorem of Marcinkiewicz-Zygmund [12, p. 486, Th.2.9] to the distribution on the
right-hand side, then

(12) m({x e GI{Z [(Legns)(x) 12372 > t/1kI12}) < {Cpa NS DIKIY 2] | gns 122,39
< {Co e NS Dkl ML £ 1L, 3,

where C,, is just the constant appears in the weak version theorem of Marcinkiewicz-Zygmund, which is deter-
mined only by p and g. The above two relations (11) and (12) give the desired estimate (3) for such a function f
that satisfies the conditions stated at the begining.

The task left to us is to remove the restrictions imposed on f. Let f € L?(G) N L*G). As shown below, we
can choose a sequence { fv} satisfying the following properties:

@ fve C(GYNLYG) and supp fn is compact.

() Lmpy- o (Tea/n)(X) = (T f)(x) ae. (j=1,...,J).

(iii) limy- 4o | f = fullzo) = 0.

Applying the result already established above to each fy, and then using Fatou’s lemma, then we see that the dis-
tributional inequality (3) still holds for f concerned.

To construct such functions fy (N = 1, 2, .. .) that satisfy (i), (ii) and (iii), we take first compact sets K, (v
=1,2,...)satisfying lim,~ 1 Il focIImG) = hmv—»+m Il fxxsllz@) = 0, where K ¢ means the complement of K,.
And then set g, = fxx.. Then g, € L'(G). Next we take an approximate identity {#;} in L'(G) such that each
supp u; is compact (Hewitt-Ross [13, vol. II, p. 298, (33.12)]), and write g,s = g,*us. Then g,5 € C(G)N
L'(G) and supp §,; is compact. Furthermore g, s — ¢, in LXG). So we can take &, such as llg,,5, — gvllzzc) <
1/v for each v. Then the sequence of the functions 4, = g,5, (v = 1,2, .. .) conveges to fin L*G). For each j,
Tieshy = Ty, f in L*(G). Therefore we can choose such a subsequence {vy} from {v} that Ty« h,, = Tieg,f a.€.
asN— +o forallj=1,2,...,J. The functions fy = A,, (N = 1,2, ...) could be the candidates for the
desired functions. It is easy to see that they satisfy (i) and (ii). And the relations

ILf— hv"u(c) = ”(f—f*uav) +(f— gv)*ué,"zﬁ(c) = "f_f*uav"LP(G) + ”f_ gvuL"(G)

assure that the fy’s also satisfy (iii), since we may assume that u; = 0 and lim; {we us(x)dm(x) = 0 for any
neighborhood W and 0, and may use the fact that the set of all continuous functions on G with compact sup-
ports is dense in LP(G) ([13, vol. I, p. 140, (12.10)]).
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3 On the case of G=R"

In this section, we study the case G=R". The additive group R" can be covered by the cubes Q,, = 2nm + Q
= R"/(Z")*, Q = [0, 2n)", m € Z". This property is an advantage for the following argument. By making use
of this feature, Fan had NL(ﬂ.q)(Tn)’L(p.q)(Tn)({(bj|A }) =< CNL(IMI)(Rn)’L(p.q)(Rn)({(bj }) in [9] with ¢J(6) = ¢(A’Jé) (_] = 1, 2,

.), and Wozniakowski proved

Noanweany(@1Z") < Nowny,wiiwny(9)

and pointed out that we are able to take 1 as the constant in the right-hand side of (2) in Introduction within the
framework of single Fourier multiplier in [22]. He also said in Remark at the end of his paper that the same ine-
quality holds even if we replace L' by L(r, p), p =2 1,0 <r < +© (1 < rforp = 1)and wL' by L(s, p),0 < s
< + o (probably L(r, p) and L(s, p) should be read L(p, r) and L(p, s), respectively). In the statement of the
remark, the case of weak type is excluded. The aim of this section is to extend Wozniakowski’s result to the case
of maximal operators and to have a result containing the weak type cases. But we depend on the ideas of them
for the proof.

To state our theorem, we introduce the following notations.

For a measurable function f on a measure space (M, m), we denote by A,the distribution function of f defined
by As(2) = m({xe M| f(x)| > t}) for 0 < t < + o0, We write the non-decreasing rearrangement of f by f*
which is defined by f*(¢) = inf {s > 0l4,(s) < t}. Followmg Hunt [15], we denote by L(p, q) the function
space of all functions f on M satisfying

Wflxg = (@/ )N Ef* (O paarsy = @M Wedg (8) Pl oy < + 0,

where LI(dt/t) means the Lebesgue L7 space on (0, + o) with respect to the dilation invariant measure dt/t.
Hereafter we shall use such an ambiguity that ¢'/? = 1, if ¢ = + . To express the underlying measure space
M, we also use the notation L¥9(M) instead of L(p, q).

The measure space M treated in this section is R” or Q = T", and the measure m is the Lebesgue measure on
each of them. For a subset £ of R” or Q, the Lebesgue measure of E is designated as | E |.

For a 2n-periodic function F, we denote the distribution function of F on Q by Arinstead of Arto clarlfy the
difference between underlying measure spaces Q and R".

Our assertion is the following.
Theorem 3.1 Assume that each ¢; € L*(R") is continuous at every points of Z", Then

Nyooan,pooay(10;1 Z"}) < Nienwn,roown({d;})

Jor0<p< +0,0<r< +wandd<s=< +o.
Proof. As a matter of convenience, we introduce such a notation that

(13) (T3F )(X) = max,<j<; [(T;F)(x)]
forJ=1,2,..., where we set T’- = T¢j| z(j=1,2,...). We try to estimate the distribution function
App(t) = 1{0e QI(T*F)6) >t}

of T?Ii' for ¢ > 0 at first under the assumption that F is a trigonometric polynomial. And assume that F(x) =
Yme z-F (m) €™*, Let x, be a non-negative smooth function bounded by 1 from above on R! with compact sup-
port such that yx(t) =1 (I7] < 2nk) and 3 (zr) =0 (I7l =z 2n(k + 1)) for k =1,2, ..., and set

W;:C(x) = l//k(gx)’ Wk(x) = ]:IIXk(xv) (8 > O,X = (X1, P ,xn) (S Rn)'

With these functions we write
Tie i (X) = Wi NTF)(x) — T;(wiF)(x),
where T; = Ty, Then rj, is the inverse Fourier transform of 7, € L'(R™). Therefore
[Pk (X)| < @r) ™ Feilly (x € R™).

Since ;.. « has such a form as

;}';s,k(é) Z F(m){¢/(m) ¢](€)} - '//k(é m)

meZn

we have the L'-estimate

eilly = 30 1F(m)] SR" lg;(m) — ¢;(m + &) (&) dE.

meZ”"
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So we put the right-hand side into J;.. , and set

A];g’k = max Jj;s,k-
1=sj=sJ

Then we have
Wik NTIF)(x) = T*(wiF)(x) + Q) Ak

Because of the facts that each ¢; is bounded and continuous at every points m € Z", W € L'(R"), and F (m)
= 0 except for a finite number of m, we see lim,, Jj;.,x = 0. Therefore lim,— 4.+ = 0 for any fixed J and k.
For sufficiently small & such that (27)™"/24,,.x < t, we have Aysr3r)(t) < Arsir(t — Qn)""?A;.). Therefore
WAy 38 Pllise,+ wparry < NEAroir(t — QM)A se ) P Nlisa + an,arrey
< (2 + @)™ 2A 56 )A 1+ (8 PNl - @ryw2 s+ 001 )

(27!)_"/2A Tk
a— n) " Ay
for any a and ¢ such that @ > (27) "/?4 ...+, where L5((b, + ©), dt/t) means the Lebesgue L* space on (b, + o)
with respect to the measure d¢/¢. The last inequality in the above chain of relations follows from (¢ +
Q) A )/t < 1+ 2n) A/ (@ — Qr) A ses) for t > a — (2m)""*A e k. The L*(dt/t)-norm in the
last term is equal to s~'/* times | T*(wiF)Il¥s. And it is bounded by Ny, 2(0.5({d; DIwiF ||%,. Therefore

(ZR)_"/ZAJ;E,/C
a— (Zﬂ)_"/ZAJ;g,k
By the way, wi(x) < 1and supp wi C [—2n(k + 1)/¢, 2n(k + 1)/€]". The number of the muti-indices m satis-
fying Q. N[—2n(k + 1)/¢, 2n(k + 1)/e]* # @ is not greater than [2{e"!(k + 1) + 1}]". Therefore

< ( 1+ )"M.T*(.,,;F)(t)l/p"L’(dt/t)

14) WA yscrsmy ()Pl Lea, +op,arrey < 8™ s( 1+ )NL(p.r),L(p,s)({¢f})|| wiF |7

Awgp(t‘) = | U{Q,,,(IFl > )I0.N[—2r(k + 1)/, 2n(k + 1)/e]" # B} < {2(% + 1>}nAp(t),

where we have used the periodicity of F and the notation Q,,(|1F| > t) = {x € Q.|| F(x)| > t}. By this rela-
tion, we have

L] 1/ 1/ k+1 " 1/ 1/
(15) NweF g, = r/tdyer (8) Pllirgen < 12 —8— +1 r' e Ap(E)YP N raes ey

k+1 n/p
=13 *! IF1I5,.

On the other hand, yi(x) = 1 for x e [—2nk/¢, 2nk/€]". So we consider the multi-indices m satisfying Q,, C
[—2nk/e, 2nk/€]". The number of such multi-indices m is at least {2(¢~'k — 1)}". Taking account of the period-
icity of T*F, we have

- k "
(16) [Aysrrmy ()] = | U{Qm(T3F > t)|Qm C [—21k/e, 2nk/€]"} | = {2(; - 1)} Azsr(t)

with the same notations as above. Therefore the left-hand side of (14) can be estimated from below by

k n/p
a7 {2<; - 1)} 1£A 237 (2) /Pl (e, op,a -

Combining (14), (17) and (15), we have
k nip k+1 nip (Zﬂ)—n/zAJ;a,k
(18) {2(; — 1)} sllslltAT?F(t)llpllLs((a,+oo),dt/t) = {2'(_““‘—“8 + 1)} (1 + 7 — (27[)“"/2Aj;s_k>
X Ni,n,ueo{ e DIF .

Dividing the both sides of above inequality by {2(¢ "'k — 1)}/ and letting € = + o0, and then pushing k to in-
finity, then we get

YN tA 73 ()P L@+ opatrey = Nigoorypos Lo DIF 1.
Finally we let @ tend to 0, then we have the inequality
(19) YN tA 7 (E) PNl sarsry < Nioor,ios {0 DIF 1%,

on condition that F is a trigonometric polynomial.
Now we remove the restriction posed on F. Let F e L»(Q)NL*(Q). The Cesaro means Fy, Fn(6)
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= 2imi=n =1 1 = Imy /N)F (m) e®™, of F converge to F a.e. Since each T;Fy is equal to the Cesaro mean
of T;F, limy- o T5Fy = T3F a.e. Therefore

20 YN tA 7 ()Pl Loy < lim jnfs”SlltAf;FN(t)lfpllLs(d,,,).

Let now E = {6 e QOllimy-+o Fn(0) = F(6)}. Then |E| = (2n)". With the notation Es(t) = {8 e
E|1G(0)| > t}, we have the relation Ep(¢) C lim infy-+w Er,(¢) C lim supy- +« Ef, C Er(t — €) for any ¢
> & > 0. By these relations, we can easily obtain

Ap(t) < liminf Ag (¢) < lim sup Ag,(¢) < Ap(t — &)
. N—+ N-+©

for any ¢ > & > 0. Therefore, at the continuous points ¢ of Az, and hence at almost all points ¢, we have
limy- 400 AR, (¢) = Ap(t). Furthermore 0 < Af,(¢) < 27)"X©,1F1.)(t), Where xo,i71, means the characteristic
function of the interval (0, I Fll.). The Lebesgue dominated convergence theorem assures that

1) Nligl I Exll¥, = Nlirf AR (O o = rM AR PNl gy = IF N,
— 40 -+

The relations (20) and (21), and the inequality (19) for Fy guarantee (19) to hold for F e L»"(Q)NL>(Q).
Lastly we consider the case F e L®»(Q)NL*Q). For such F, we set Fx(0) = F(0), if |F(8)| < N, and
Fy(0) =0, if |[F(8)| > N. Then each Fy satisfies the inequality (19). Since |Fy| < | F |, we have [Fyl;, <
I|FI, On the other hand, since Fy — F in L*Q), we can extract a subsequence {N,} from {N} such
that TFFy, — T}F a.e. By these reasons, we see that (19) holds for F e L®"(Q) N L¥Q) too.
Since Az1r(t) T Ar+r(t) as J T 4+ 0, we get the desired inequality

IT*F I3 = s WtA 7+ () PNl poasey < Neeornios (b DIF N5,

for Fe L»(Q)NLYQ).
Remarks. Here we give some remarks for replacing L(p, s) by L(q, s), g # p, in Theorem 3.1. By tracing
the argument inducing (18), we get

2<k 1) nlq y 1A ; 1/q" 5 k+1 +1 n/p L+ (Zn)_”/ZAJ;E,k )
P ° 5 s((a,+© = _—
e N 737 ()" U o, + 0.t/ 1) c o (27z)“"/2AJ;E_,,

X NL(P,Y),L(q,s)({¢j }) IF ";,r

for any trigonometric polynomial F.
We consider the case p > q first. In this case, after the same process as stated at just below (18), we have

Slls”tAT;F(t)l/q||Ls((a,+ao),dt/t) =0

under the assumption Ny 2@.o({¢;}) < + . By the arbitrarity of a, this implies 73F = 0 for any trigono-
metric polynomial F. And so it follows that every ¢; must be ¢; = 0 on Z", if Ny, r),14,5({9;}) < + 0. Taking
account of Ni.r,0.9({d;(€)}) = "/~ VUIN, . 14.5({#;}) and assuming the continuity of each ¢; on R”, we
finally have the conclusion that, if p > g, then N;, ), 04.9({®;}) < + o0 implies ¢; = 0(j = 1,2, ...). This is
similar to the result of Hormander [14, p. 96, Th.1.1] for (L?, L?)-multipliers.

Next we show that, when p < ¢, we can not necessarily get the conclusion that the finiteness of Ny, (0,5
({¢;}) implies the one of the counterpart Ny, (4,5 ({¢;1 Z"}). For the purpose we take first a smooth function
w on R! such that supp w C [—1/2,1/2] and w(0) = 1. And set

o(¢&) = ZZ w(en'(& — m)),
where &, = 27" (m e Z). To see that the inverse Fourier transform ¢ of ¢ is in L(p’, r’) for such p’ and r’

thatl1 < p’ < +oand1 < r’ < + orthat p’ = r’ = + o, we adopt the norm || < Il ,- instead of Il - II% ,,
which is defined by

<igl 1 E|

It is known that | f15 , < I fll,,» = {p’/(p’" — D} fIl7 , (Hunt [15, pp. 257-258], O’Neil [18, p. 136]). Since
Il - I, is a norm and llea(en- ), = & "Il ., we have

1
Nl = Nf**N 0y f**(2) = sup ———S | £(x)!dx.
E

1l < ) lemp Em M = (D) e )@l < +00.
meZ meZ
Therefore we get ¢ € LP™)(R") for such p’ and r’ that are in the range stated above. When 1 < p < g <
+o,1<r< +wandl =<s=< +o, we are able to take such a p, that satisfies 1 < pp < + and 1/g =
1/p + 1/py, — 1. And evidently 1/s < 1/r + 1. Therefore we can use Young’s inequality and have



104 Kaneko and Sato

(22) 1T fllgs = Id#fligs < Cliglpll £l

with some constant C (O’Neil [18, pp. 137-138, Th.2.6]). In other interesting caseof l <p < g=s= +©
andl <r< +worthecasel =r=p < g =s = + 0, we have the relation

(T )(x)] = 1($#/)(x)] < S . {$(x — O f*()dt < Cldx — HNENfIE = ClglE N fFIE,

where Cis a constant depending only on p and r, anji the indices p’ and r’ are the conjugates of p and r, respec-
tively (Hunt [15, p. 257, (1.9)]. On the other hand, T}z becomes the identity map. Therefore, if the transference
is true, then the inclusion relation L®»"(T) c L%)T) holds for p < q. But this is impossible.

4 Maximal operators on the Hardy spaces

The difference 7;.. . (x) = wi(x)(T;F)(x) — T;(wiF)(x) plays an important role in Fan [9] and Wozniakowski
[22], and we followed the line in the preceding section. The method is also taken in the paper Fan-Wu [10, 11].
Although their interest is directed to the case of ¢; = ¢(4;°) (j = 1,2, .. .), they took the operators as map-
pings from Hardy spaces to LP-spaces and proved the inequality Ngs=), roan({0;| Z"}) < CNrown,ogn({9;})
with some constant C for 0 < p < 1. The spaces H?(R") and H?(T") are the real Hardy spaces on R"” and T'"
= Q = [0, 2m)", respectively. The space H?(R") is the totality of all tempered distributions f satisfying fT
LP(R™), where f1(x) = supo<r<+w | fx0,(x)|, v,(x) = r "v(r 'x), and v is a member of Schwartz function class
S(R™ on R" such that [z v(x)dx = 1. It is known that the definition of H”(R") is independent of the choice of
v. So we adopt a smooth function » with compact support for the definition of H?(R") and fix it hereafter. The
space HP(T™) is defined as following. Let T, be the periodization of v,, that is T,(x) = Zez- v,(x + 27m), and
set FT(x) = supo<r<+o | F+T.(x)| for a distribution F on T'", where the asterisk * means the convolution among
periodic functions and distributions on T”". The space H”(T") is defined as the set of all distributions F on T'"
such that FT e L?(Q).

The purpose of this section is to give a transferability of the boundedness of the maximal Fourier multiplier
operators from H? to weak L*.

Theorem 4.1 Let each ¢; € L®(R"™) be continuous at every points in Z" and 0 < p < 1. Then

NH"(T"),wU(T")({fbj'Z"}) =C {NHF(R"),WI)’(R")({d’j }) + NLZ(Rn),wLZ(Rn)({¢j })},

where the constant C is determined by p, n and v, but is independent of {¢;}.

Proof. We may assume that each supp ¢, is compact because of the following reason. If we take a y e
8(R™) such that (0) = 1 and supp ¥ C B(0, 1), the unit ball in R” centered at 0, then Ty, z:F = lims1o UjsF
a.e. for every j = 1,2, . . . and periodic function F ¢ L*Q), where we set U;; = T,7;)12- Therefore T*F <
lim inf,-.+o UXF a.e. for any sequence {d,} such that §, = +0 (v = + ), where

Uf = sup 1 Ujs( )| = T Ts27-

This implies
Ars(t) < lim inf Agsr(t) (¢ > 0).
On the other hand, T%5,f = Th) (fews) for f e LAR™)NH?(R™), since Ty,pnf = To(frws) G =1,2,...).
And
Ifxysllaern < C(n, p, I fllzpwn (0 <d =< 1),

where the constant C(n, p, ) is independent of J (Stein [21, p. 127, 5.1(c)]). Therefore it is sufficient that the
statement for {¢; ¥; } instead of {¢;} will be proved.

In the following, we assume that all supp ¢; are compact.

Following Fan-Wu [10], we introduce such a function that go(7) = 1 — 473, if |7| < 1/2, and go(7) = 0, if
Izl > 1/2. And set

q'(x) = 131 qo(mx,) (x=(x1,...,X%)e R"),

where 7 = (1, 72, - - . » 1) = n(e, K) is defined by n, = 1/2{(1 + 2K)n — &} v=1,2,...,n) with ¢ =
(€, 8,...,8) e {0,n}"and K =1, 2, . ... Like as the preceding section, we consider the difference

rin(x; F) = q"CN(TF)x) — T(q"F)(x),

where T; and T; express T, and T;, 2+, respectively.
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We assume temporarily that the 27-periodic function F is in C*(R"). Then the similar argument in the last
section leads us to the relation

l7fa(; F)| < (2m)™"2 ZZ |F(m)l _L lg;(m) = ¢;(...,m, + &, .. )I1g(&)1dE

for all x. We denote the right-hand side by J/,,(F). By reason of the facts that § € L'(R"), each bounded func-
tion ¢; is continuous at each point m € Z", and X z- |[F(m)| < + 0, we have 6/,,(F) = 6}nex)(F) = 0 (K
— + ). So, if we set

A5:q(F) = Abnexy(F) = max Ofn(F),
then limg- +w 45,(F) = 0. Therefore, by making use of the same notation 75 as (13) at the outset of the proof
of Theorem 3.1, the relation

q'(XNTIF)(x) = T*Q'F)(x) + A5(F)
leads the distributional inequality
Neorn, wer@n({95})
37t/4" — A}, (F)

for sufficiently large K which determines # together with ¢. This inequality is meaningful only when ¢"F e
HP(R™) and shall be applied to HZ , defined at (28) below.

Now assume F € L% Q). Then, by the same argument for H?(R") in Stein [21, Chapter III], we can decom-
pose F into such a form

_ P
(23) Agre (37t A7) < Arrgry(37t] 4" — Ajy(F)) < ( llg"F ||Hp(Rn)>

+©
(24) F=G+H=G+ ), pA,
=1
where G is a bounded 27n-periodic function such that
(25) ||G"L“°(Q) = C(n,p, 'l))"F"Hp(T,.)
and is called exceptional atom in Blank-Fan [4], and each A, is a 2n-periodic function called regular atom in [4]
and having the following properties: For each A4, if we associate a function @ on T" = {e* = (e, ..., e*)|0

<x,<2n(v=1,...,n)} defined by d,(e™*) = A,(x), then there exist a ball B(8’, p;) on T" with the center 6’
and the radius p; satisfying that supp @ C B(0’, p;) and 18,(0)| < p; /7. Here we can take p; such as p; < 7 /4.
Furthermore, each g has vanishing moments in some sense. To state it more precisely, we introduce the follow-
ing notations. For a point § e T, if 6 can be written 8 = e'* with some —n/2 < v < ©/2, then we set [] = 0,
and if # = ¢'* with a number 7 such that n/2 < 7 < 37/2, then we put [d] = n. For8 = (6, ...,60,) e T",
we define [#] by [0] = ([61], . . ., [6.]). To each @, we correspond a non-periodic function a; defined by a;(x)
= ae™) = Ai(x), if Ix, — [6}]l < (v =1, ..., n), but otherwise a,(x) = 0, where 8' = (6%, . . ., 0%) is the
center of the ball B(6', p)) carrying @. Then

26) | S Padx =0 (18] < d),

where we can take a sufficiently large number as d at will. With this decomposition, we have
T*F < T*G + T*H.
The term 7 *G can be easily handled as following.
27) A6 (1)? < QY YP=1DiA po6(0)V? < QrY" VP YIN Ly wrany({di | Z" NGl 2y
< C(n, p, V)Np2@wn,wiz@ (10 DIF l grocrny.

The last inequality follows from Theorem 3.1 and (25). To manage the term T *H, we classify the regular atoms
A, by the centers 8’ € T" of their corresponding supports B (8, p;). Let

L
H: = Z yIAl = Z Hé' and Hﬁ = Z )’IAI (8 e {0, 71,'}").
I=1 ee {0,m}" 1=l/<L,[0'l=¢

Here we take an ¢ € {0, n}" and fix it for a moment. If we consider the cube Q(g) = 1%~ [¢, — &, &, + 7] in
R", then the non-periodic functions a; defined above satisfy

a = A)ow

for such / that [6'] = ¢, since the radius p; < /2 (we have taken p, such as p; < n/4). It is easy to check that
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each a;is an H”(R")-atom, and that #; = H%)ow = Zi<i=r o= Y1 and g"®®OHE are in H?(R™). But HZ is
not smooth in general. Hence we introduce an infinitely differentiable function y satisfying supp w C B(0, 1)
and [z w(x)ds = 1, and consider the convolution H%, = HExy,,

(28) Hi.(x) = (Hi=y)(x) = Ln Hi(x — y)y(y)dy,

with 0 < 7 < m/4. Then H%, is a smooth 2n-periodic function and
HEi(x) = D) (hixyp)(x — 2mm).

meZ"
The support of each hfsy.(- — 2am) = Xi<i<r61=c Yi(@#Ww.)(- — 2nm) is completely contained into the in-
terior of Q(¢) + 2nm, for which reason we have taken p; and 7 such as p; < n/4 and t < n/4. Furthermore
supp ¢" = = [—{(1 + 2K)n — &,}, (1 + 2K)n — &,] is just equal to a finite union of such cubes Q(e) +
2nm and the number of m satisfying Q(¢) + 2nm C supp ¢" is at most (1 + 2K)". Therefore

q"(X)H ;(x) = ﬁ%; q"(xX)(hExy)(x — 2nm)

and the number of the terms in the right-hand side does not exceed (1 + 2K)". In addition to them we are able
to write

T n/p
q"(xX)hExw)(x — 2nm) = (1 + _> 2a@™(x),
1=si=L,[6]=¢ Y]

where

n/p
ai™"(x) = ( ﬁ) q"(x)arxy.)(x — 2nm).

We see that each a{™"" is an H?(R")-atom, if the integer d in (26) is taken sufficiently large, and hence g"HZ%,
e HP?(R"). Furthermore

4 T "
(29) lg"HE Aoz < C(n, p, v)(A + 2K ) (1 + —) [y:12.
1=I<L,[0']=¢ P
Taking account of these preparations, we apply the inequality (23) to H%.. Then
NHF(R") wLP(R")({¢j }) )p
30 Agnrsm)(3"t/47) < : "H ol oz | -
(30) q(TJHe,r)( / ) (3"t/4" _A},H(Héf) llg : g (R™)

If we set M(e,K) ={me Z"1Q(e) + 2nm C II}-, [—1/4n,, 1/4n,]1}, then ¢"(x) = (3/4)" (x e Q(e) +
2nm, m € M (g, K)) and the number of m in M (g, K) is greater than or equal to (K — 3/2)". Therefore

Agursm)(37t/4") = (K — 3/2)' Azsm ().
By making use of this relation in (30) and (29), then
2K + 1\" [ Naownweown(19;}) T\
Amsan () = €. P, 2) (K = 3/2) (3"t/:t")— 4(15;),,((1;21) e B, (1 * E) il
In this relation, if we push K — + 00 and then 7 = +0, then we have
Nyr@n, wr@n({9) }))”
t 1=I<T,[0=¢

Arsayn = C(n, p, v)( Ly:12.

Since T3H < %,c 0T $HE, we have

Z |')/[|p.
t i=1

When L - +c0, H* — H in the sense of distribution on T”. Therefore I;V(m) = limz-+o I-/I\L(m) (me Z").
Since ¢;(m) = 0 except for a finite number of m € Z" by our assumption for {¢;} supposed at the begining,

Loz H)(x) = 3 &5(m)H (m) e~ = lim (T2 H")().

finite
Therefore (TTH)(x) = lim-+ (T¥H)(x). Letting L — + 00 in (31) and lastly J — + o0, then we have
NH"(R"),WL”(R")({¢j })

@D Arsn2"t) < C(n, p, v)(NH"<R">-me~)<{¢,-}))ﬂ L

(32) Ay (2"t) < C(n, p, 1/)( "F”HP(TH))p.
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Combining the inequalities (32) and (27), we get
Are((1 + 27)1) < C(n, p, VY[ Nexgn,werwn(16;1) + Nas@wn,wer@n({0; 1)1t "I | gorn)?
and complete the proof.
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