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A technique for minimizing the Bethe free energy of Ising spin systems is presented. The technique is based on a
property of the Bethe free energy that diagonal elements of the Hessian are generally positive. This implies that
solving the extremum condition with respect to a single element with fixing others at each update yields a unique
solution which can be easily found by efficient algorithms such as a bisection method and reduces the value of
the Bethe free energy. The proposed method, therefore, iterates sequential minimization with respect to a single
element, which probably leads to convergence to a local minimum. Practical relevance of the scheme is shown
by an application to a problem of multidimensional probabilistic reasoning that arises in a modern wireless
communication system.
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I. Introduction

Probabilistic reasoning or efficient computation of expectations in massive statistical models is one of the major
problems in modern information sciences. When an objective system can be pictorially represented by a graph free
from loops, an efficient algorithm termed the belief propagation (BP) offers the exact values of expectations in a
practically feasible time [1]. However, as the class of systems that can be represented by loop-free graphs are limited,
much effort is being made recently for developing efficient approximation algorithms that can be applied to a wider
class of systems [2–5].

Much attention is being payed for a family of mean field methods from statistical mechanics as a basis of developing
such approximation algorithms. In particular, a scheme termed the Bethe approximation [6, 7] has been studied
extensively since a close link to BP was reported several years ago [8]. An approximate solution of this method, which
is characterized by the extremum condition of a certain cost function termed the Bethe free energy, can be identified
with a fixed point of the BP dynamics that is applied to loopy graphs [2]. This link potentiated development of a novel
algorithm for finding a solution of the Bethe approximation which is guaranteed to converge [3]. The new algorithm,
which is often referred to as the convex-concave computational procedure (CCCP), is derived by constructing a
procedure for solving the stationary solution of the BP dynamics in such a way that descent of the Bethe free energy
is guaranteed at each update. Construction of CCCP is instructive for understanding why BP does not necessarily
converge to a fixed point when employed in loopy graphs. In addition, this algorithm is of practical relevance in several
applications exhibiting better performance than BP with consumption of computational cost of times [9, 10]. However,
it is noteworthy that CCCP is not the unique algorithm for minimizing the Bethe free energy although a close
relationship to BP is prominent in research of probabilistic reasoning. This implies that it is still important to explore
other possible algorithms that carry out this approximation in a practically feasible time scale in order to provide for
potentially wide applications of the Bethe method.

The present study is promoted by such motivation. More specifically, we propose an algorithm that searches a
solution of the Bethe approximation sequentially minimizing the Bethe free energy for systems that are composed of
binary variables (Ising spins). The algorithm is based on a distinctive property of the Bethe free energy that diagonal
elements of the Hessian are generally positive. This indicates that the solving the extremum condition with respect to a
single element with fixing others at each update yields a unique solution, which can be easily searched by efficient
algorithms such as a bisection method reducing the value of the Bethe free energy. The proposed method, therefore,
iterates sequential minimization with respect to a single element, which probably leads to convergence to a local
minimum. Although our algorithm is currently limited to the systems of Ising spins, extension to general cases is
probably possible, which will be examined in the future research.

This paper is organized as follows. In the next section, we introduce a formalism of the Bethe approximation based
on the concept of the Bethe free energy. In addition, BP and CCCP are briefly reviewed as computationally feasible
algorithms performing this approximation. In Section 3, we show that diagonal elements of the Hessian of the Bethe
free energy are generally positive. Utilizing this property, we present an algorithm for sequentially minimizing the
Bethe free energy, which can be employed for finding a solution of the Bethe approximation in a practically feasible
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time. In Section 4, practical relevance of the developed scheme is examined by applying to a multidimensional
probabilistic reasoning problem that arises in a wireless communication. The final section is devoted to summary.

II. Bethe Approximation: Bethe Free Energy, BP and CCCP

As a basis for the proposed algorithm, let us consider a joint distribution of N dimensional vector of Ising spins
S ¼ ðS1; S2; . . . ; SNÞ ðSl ¼ fþ1;�1g; l ¼ 1; 2; . . . ;NÞ,

PðSÞ ¼ Z�1
YM
�¼1

 �ðS�Þ exp
XN
l¼1

hlSl

" #
; ð1Þ

where  �ðS�Þ is termed the clique evidence, which depends on a certain subset of multiple components (clique) S�,
and hl is a local external field. Z ¼

P
S

QM
�¼1  �ðS�Þ exp½

PN
l¼1 hlSl� is the partition function. In such systems,

assessment of marginal probabilities

PðSlÞ ¼
X
SnSl

PðSÞ ð2Þ

is computationally difficult in general, where XnY represents a subset of X from which Y is excluded. Therefore,
developing computationally tractable algorithms that assess an accurate approximation of Eq. (1) is important.

The Kullback-Leibler divergence from a test distribution QðSÞ to the objective one (1), which is defined as

KLðQjPÞ ¼
X
S

QðSÞ ln
QðSÞ
PðSÞ

; ð3Þ

offers a useful guideline for development of such an algorithm. KLðQjPÞ is non-negative and minimized to zero if and
only if QðSÞ ¼ PðSÞ, which implies that minimization of KLðQjPÞ with respect to QðSÞ always yields the correct
distribution PðSÞ ¼ QðSÞ. This property is, however, not useful for directly assessing Eq. (2). Instead, application of
this minimization principle or its approximation to a family of tractable test distribution systematically leads to various
potentially effective algorithms.

The Bethe approximation can be formulated along this guideline. For this, we rewrite Eq. (3) utilizing the variational
free energy F ðQÞ as

F ðQÞ ¼
X
S

QðSÞ ln
QðSÞQ

�¼1  �ðS�Þ exp
PN

l¼1 hlSl
� �

¼ � ln Z þ KLðQjPÞ � � ln Z; ð4Þ

which implies that minimization of F ðQÞ yields the correct distribution QðSÞ ¼ PðSÞ. The Bethe scheme is offered by
approximating F ðQÞ with the Bethe free energy F Betheðfb�g; fblgÞ, as

F ðQÞ ’ F Betheðfb�g; fblgÞ

¼
XM
�¼1

X
S�

b�ðS�Þ ln
b�ðS�Þ

 �ðS�Þ exp
P

l2Lð�Þ hlSl

h i þXN
l¼1

ð1� ClÞ
X
Sl

blðSlÞ ln
blðSlÞ

exp hlSl½ �
; ð5Þ

where Lð�Þ denotes the set of element indices that directly relate to clique � and Cl is the number of cliques to which
element Sl is directly connected. The components of the test distribution b�ðS�Þ and blðSlÞ are termed the beliefs, which
correspond to the marginals

P
SnS� PðSÞ and

P
Snbl PðSÞ, respectively. In the case of Ising spin systems that we are

focusing on, one can express the single site marginal as blðSlÞ ¼ ð1þ mlSlÞ=2 utilizing the expectation parameter
ml ¼

P
Sl¼�1 SlblðSlÞ without loss of generality. We adopt this expression hereafter. Note that the marginals are reduced

from the identical distribution PðSÞ, the reducibility conditionX
S�

Slb�ðS�Þ ¼
X
Sl

SlblðSlÞ ¼ ml; ð6Þ

must hold when Sl is an element of S�.
If the variable dependence in Eq. (1) is pictorially expressed by a loop-free graph, Eq. (5) under the constraint of

Eq. (6) exactly agrees to the correct variational free energy F ðQÞ for the test distribution

QðSÞ ¼
QM
�¼1 b�ðS�ÞQN

l¼1

�
1þ mlSl

2

�Cl�1
: ð7Þ

In such cases, minimization of the Bethe free energy (5) offers the exact assessment of Eq. (2). Unfortunately, Eqs. (4)
and (5) do not accord in general. However, this implies that a stationary point of Eq. (5) probably offers a good
approximation of Eq. (2) when influences of loops in the graph can be regarded as weak. This is an intuitive
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justification of the Bethe approximation.
Extremizing Eq. (4) with respect to beliefs adding terms

P
�;l2Lð�Þ ��lðml �

P
S�

SlPðSlÞÞ to impose the constraint (6)
yields

b�ðS�Þ ¼
 �ðS�Þ

Q
l2Lð�Þ e

ðhlþ��lÞSlP
S�
 �ðS�Þ

Q
l2Lð�Þ e

ðhlþ��lÞSl
; ð8Þ

tanh�1ðmlÞ ¼ hl þ
X
�2MðlÞ

��l

Cl � 1
; ð9Þ

where MðlÞ denotes the set of clique indices that are directly linked to element index l. Inserting Eqs. (8) and (9) to
Eq. (6) yields the stationary point condition of the Lagrange multipliers, which can be expressed as

�̂��l ¼ tanh�1

P
S�

Sl �ðS�Þe
P

j2Lð�Þnlðhjþ��jÞSjP
S�
 �ðS�Þe

P
j2Lð�Þnlðhjþ��jÞSj

 !
; ð10Þ

��l ¼
X

�2MðlÞn�
�̂��l: ð11Þ

BP can be regarded as the natural iteration of Eqs. (10) and (11). The approximate expectation is assessed as ml ¼
tanhðhl þ

P
�2MðlÞ �̂��lÞ utilizing the convergent solution of these equations.

Although BP empirically exhibits an excellent ability of quickly finding the stationary solution when employed
under appropriate conditions, convergence to a local minimum of Eq. (5) is not necessarily guaranteed, which may
undermine the reliability of the algorithm. In order to resolve such problems, Yuille proposed CCCP, for which descent
of Eq. (5) is ensured at each update [3]. This is represented as a double loop algorithm

Outer Loop: mtþ1
l :¼ tanh hl þ

X
�2MðlÞ

tanh�1ðmt
lÞ � ��l � hl

� � !
; ð12Þ

where ��l is provided as the fixed point value of the inner loop update

Inner Loop: ��þ1
�l :¼

tanh�1ðmtÞ � �̂���l � hl

2
þ

X
�2MðlÞn�

tanh�1ðmtÞ � ���l � hl

2
; ð13Þ

where a single pair of indices � and l is chosen at each inner loop update indexed by � and �̂���l denotes the value of
Eq. (10) evaluated utilizing values of ��l at inner loop time �.

Unlike BP, CCCP is guaranteed to converge to a certain local minimum of Eq. (5). In addition, it is reported that
considerably better performance than that of BP can be obtained by spending computational cost of only several times
when conditions are optimally tuned in applications to decoding of low density parity check codes [9] and multiuser
detection of code division multiple access systems [10]. However, necessary time for convergence of the inner loop
empirically grows significantly in such situations that the Bethe free energy (5) can possess many local minima [10],
which is probably linked to the concept of the replica symmetry breaking (RSB) [11, 12]. This implies that CCCP does
not necessarily yield satisfactory results in practical situations and, therefore, quest for other methods is still important.

III. Sequential Minimization

The algorithm that we present relies on an inequality with respect to the diagonal elements of the Hessian of the
Bethe free energy

@2F BetheðmÞ
@m2

l

� 0; ð14Þ

which holds for any Ising spin systems and any set of expectation parameters m ¼ ðm1;m2; . . . ;mNÞ, where
F BetheðmÞ ¼ minfb�gfF Betheðfb�g; fblgÞj

P
Sl¼�1 SlblðSlÞ ¼ ml ðl ¼ 1; 2; . . . ;NÞg. This implies that for any element ml,

solving the extremum condition

@F BetheðmÞ
@ml

¼ tanh�1ðmlÞ � hl þ
X
�2MðlÞ

��l þ hl � tanh�1ðmlÞ
� �

¼ 0; ð15Þ

where Lagrange multipliers ��l are determined for given m so as to satisfy Eq. (6) with respect to ml fixing the values
of other elementsmnml provides a unique solution, which can be found by a certain efficient scheme such as a bisection
method. Further, update of ml to the solution guarantees descent of the value of the Bethe free energy. This indicates
that sequentially updating ml in any order leads to convergence to a certain solution which is probably a local minimum
of F BetheðmÞ if F BetheðmÞ is bounded from below by a certain finite value, which holds in most cases [3]. For
comparison, flowcharts of BP, CCCP and the current algorithm (SEQ) are shown in Fig. 1.
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In order to prove inequality (14), we explicitly express the left hand side as

@2F BetheðmÞ
@m2

l

¼
1

1� m2
l

þ
X
�2MðlÞ

@��l

@ml

�
1

1� m2
l

� �
: ð16Þ

For assessing @��l=@ml, we utilize a relation

@ml

@��k
¼

hSlSki� � hSli�hSki�; if l; k 2 Lð�Þ,
0; otherwise,

�
ð17Þ

where h� � �i� indicates average over Eq. (8), which represents the joint distribution of S�. Let us denote the covariance
matrix of S� as C� ¼ ðC�lkÞ � ðhSlSki� � hSli�hSki�Þ and its inverse A� ¼ ðA�lkÞ � ðC�Þ�1, where l; k 2 Lð�Þ. Using
this, @��l=@ml is provided as

@��l

@ml

¼ A�ll : ð18Þ

Note that due to general properties of covariance matrices, any sub-matrices of C� and A� that are composed of
elements of these matrices by restricting range of indices to any subset of Lð�Þ are symmetric and positive definite.

In order to evaluate Eq. (18), we utilize a property of a Gaussian distribution of dimensionality jLð�Þj

Pðz�Þ ¼
j detA�j1=2

ð2�ÞjLð�Þj=2 exp �
zT�A

�z�

2

" #
; ð19Þ

where z� ¼ ðzlÞ and l 2 Lð�Þ. The covariance matrix of this distribution accords to C� and, in particular,R
dz�z

2
l Pðz�Þ ¼ hS2l i� � hSli2� ¼ 1� m2

l . This implies that marginal distribution with respect to zl is assessed asZ Y
j2Lð�Þnl

dzjPðz�Þ ¼
j detA�j1=2ffiffiffiffiffiffi
2�

p
j detA�nlj1=2

exp �
A�ll �

P
j;k2Lð�ÞnlðA�nlÞ

�1
jk A�jl A

�
kl

2
z2l

" #

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�ð1� m2
l Þ

p exp �
z2l

2ð1� m2
l Þ

	 

; ð20Þ

where A�nl represents the cofactor matrix of A� with respect to ll element and ðA�nlÞ�1
jk denotes jk element of inverse
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Fig. 1. Flowcharts of (a): BP, (b): CCCP and (c): the sequential scheme (SEQ). dout denotes a deviation between successive updates
while eout is a predetermined tolerance criterion. (a): In BP, the extremun condition of the Bethe free energy is solved with
respect to a set of the Lagrange multipliers f��lg. (b): CCCP constitutes a double loop dynamics, where the set f��lg are
determined by a iterative manner in the inner loop, the convergent solution of which updates the spin averages fmlg in the outer
loop. (c): SEQ solves the extremum condition with respect to a single element ml sequentially. This requires determining
Lagrange multipliers ��l of � 2 MðlÞ at each update.
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matrix ðA�nlÞ�1. This relation yields an inequality

@��l

@ml

�
1

1� m2
l

¼ A�ll �
1

1� m2
l

¼
X

j;k2Lð�Þnl
ðA�nlÞ�1

jk A�jl A
�
kl � 0; ð21Þ

since the right hand side represents a quadratic form of positive definite matrix ðA�nlÞ�1 due to properties of covariance
matrices. Inserting Eq. (21) into Eq. (16) offers Eq. (14).

Three issues are noteworthy here. The first one is that finding a solution of Eq. (15) at each update is not
computationally difficult as long as the size of clique �, jLð�Þj, is of the order of unity. This is because Eq. (6), which
is employed to determine Lagrange multipliers �� ¼ ð��lÞ ðl 2 Lð�ÞÞ for m, can be regarded as the stationary condition
of a convex function

g�ð��jmÞ ¼ ln
X
S�

 �ðS�Þe
P

l2Lð�Þ
ðhlþ��lÞSl

" #
�
X

l2Lð�Þ
��lml: ð22Þ

Minimization of this function can be quickly carried out utilizing efficient techniques for optimizing convex functions
as long as Eq. (22) is assessed with a computational cost of Oð1Þ. This is the case when jLð�Þj � Oð1Þ. As jLð�Þj
grows, cost for solving Eq. (15) in general increases exponentially and, therefore, performing our sequential scheme
becomes difficult. However, even in such cases, there is an example in which our scheme can still be performed in a
practically feasible time scale with aids of the central limit theorem and Taylor’s expansion, which is shown in the next
section. The second one is concerning physical implication of positivity of Eq. (21). In order to illustrate this, let us
consider the Sherrington–Kirkpatrick (SK) model [13], which corresponds to the case of  �ðS�Þ ¼ exp½�JlkSlSk� where
Jlk � N ðJ0=N; J2=NÞ, � denotes the inverse temperature and a pair of non-ordered indices ðlkÞ is identified with a clique
index �. For this model, perturbation expansion offers a relation ��l ’ tanh�1ðmlÞ � �Jlkmk þ ð�JlkÞ2ð1� m2

kÞml. This
yields

@��l

@ml

�
1

1� m2
l

’ ð�JlkÞ2ð1� m2
kÞ � 0; ð23Þ

which, after being summed up over index � (or k), represents the strength of an effective self-interaction frequently
referred to as the Onsager’s reaction term [14, 15]. In many body systems under interaction, each element effectively
interacts with itself by positive feedback effect created through interactions with other elements, which is the origin of
positivity of Eq. (21). In the Bethe approximation, such effect is virtually cancelled by locally approximating the
manner of interaction with graphs of loop-free structure, which is reduced to subtraction of the Onsager reaction term
from local fields in the case of the SK model. The final issue is that descent of the value of Eq. (5) by solving Eq. (15)
with respect to ml does not necessarily mean convergence to a local minimum. This is because even if an objective
function does not increase against perturbation with respect to a single element at a certain point, it can be reduced
by changing multiple elements simultaneously to an appropriate direction when the Hessian of the point possesses
negative eigen values. However, as far as we experimentally investigated, the Hessians of all the convergent solutions
obtained by randomly permuting order of elements to update were positive definite. This implies that our sequential
scheme practically serves as a minimization method of the Bethe free energy.

IV. Application to CDMA Multiuser Detection

In order to examine practical relevance, we applied the proposed method to the multiuser detection problem, which
arises in the code division multiple access (CDMA) scheme used in a modern wireless communication system.

In a general scenario of the CDMA system, bit symbols of K users, b0 ¼ ðb0kÞ ¼ fþ1;�1gK , are transmitted to a
single base station being modulated by spreading sequences sk ¼ ðs�kÞ ¼ fþ1;�1gN , which are assigned to each user k.
At the base station, mixtures of the modulated signals and noises are received. Under a simplifying assumption that
both of the symbol and chip timings are synchronized across users, signal power is perfectly controlled to unity per
each user and symbol period and the channel can be modeled by an additive white Gaussian noise of variance �20 , the
received signals are represented as

r� ¼
1ffiffiffiffi
N

p
XK
k¼1

s�kb
0
k þ �0��: ð24Þ

The base station, therefore, has to demodulate r ¼ ðr�Þ to detect users’ symbols b0 ¼ ðb0kÞ with knowledge of sequences
fskg, which is termed the user detection.

The user detection can be regarded as a multidimensional probabilistic reasoning problem. A general argument of the
Bayesian statistics indicates that the optimal detection scheme to minimize the bit error rate Pb, which represents the
probability of wrongly estimating bit symbols in the component-wise manner, is offered as
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b̂bk ¼ argmax
bk2fþ1;�1g

X
bnbk

Pðbjr; fskgÞ

( )
: ð25Þ

Here, the posterior probability is provided as

Pðbjr; fskgÞ ¼
QN
�¼1 exp �ð2�2Þ�1ðr� � N�1=2

PK
k¼1 s�kbkÞ

2
� �

P
b

QN
�¼1 exp �ð2�2Þ�1ðr� � N�1=2

PK
k¼1 s�kbkÞ

2
� � ; ð26Þ

where the uniform prior PðbÞ ¼ 2�K is assumed and �2 denotes the noise variance assumed at the base station. As
knowledge of all users’ sequences is necessary for assessing Eq. (25), detection scheme of this type is often referred to
as the multiuser detection.

Computational cost for exactly performing the multiuser detection in general grows exponentially with respect
to the number of users K. In order to practically resolve this difficulty, we employ our sequential minimization
scheme introducing the Bethe free energy to Eq. (26). For this purpose, we define clique evidences as  �ðbÞ ¼
exp½�ð2�2Þ�1ðr� � N�1=2

PK
k¼1 s�kbkÞ

2� and set hk ¼ 0 for k ¼ 1; 2; . . . ;K. This implies that the size of clique � is K
and, therefore, evaluating the Lagrange multipliers �� for given m is computationally difficult as K grows. However,
when s�k is independently and identically drawn from PðsÞ ¼ ð1=2Þð	ðs� 1Þ þ 	ðsþ 1ÞÞ, which is at least the case
in a basic model [16], summation over b in Eq. (22) can be well approximated with one dimensional integral with
respect to a Gaussian measure N ðh��in�; �ð1� Qn�ÞÞ because of the central limit theorem, where h��in� ¼
N�1=2

PN
k¼1 s�k tanhð��kÞ, Qn� ¼ K�1

PK
k¼1 tanh

2ð��kÞ and � ¼ K=N, which yields

g�ð��jmÞ ’ �
1

2
lnð�2 þ �ð1� Qn�ÞÞ �

ðr� � h��in�Þ2

2ð�2 þ �ð1� Qn�ÞÞ
þ
XK
k¼1

lnð2 coshð��kÞÞ � ��kmk

� �
: ð27Þ

For large N and K with keeping � � Oð1Þ, minimization of Eq. (27) with respect to ��k utilizing the Taylor expansion
provides

��k ’ tanh�1ðmkÞ �
s�kffiffiffiffi
N

p
�2

r� �
XK
j¼1

s�jffiffiffiffi
N

p mj

 !
�

mk

Nð�2 þ �ð1� QÞÞ
; ð28Þ

where Qn� is approximated with Q ¼ K�1
PK

k¼1 m
2
k utilizing the low of large numbers. Inserting this into Eq. (15)

offers an expression of the extremun condition

tanh�1ðmkÞ þ
�ð1� QÞmk

�2ð�2 þ �ð1� QÞÞ
�

1

�2

XN
�¼1

s�kffiffiffiffi
N

p r� �
X
j 6¼k

s�jffiffiffiffi
N

p mj

 !
¼ 0; ð29Þ

which is to be solved sequentially with respect to mk at each update. Equation (29) corresponds to the Thouless–
Anderson–Palmer equation of the current problem [15, 17]. As a bisection method can be employed for finding a
solution of Eq. (29) with respect to mk, computational cost for performing one sequential step which indicates solving
mk for k ¼ 1; 2; . . . ;K in a random order scales as OðKNÞ, which can be regarded as efficient [17, 18].

In Figs. 2(a) and (b), Pb numerically evaluated via 10000 experiments utilizing the proposed sequential scheme is
plotted versus various noise variances �20 in the case of N ¼ 50 and N ¼ 100 for � ¼ 0:5. In the experiments, the
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Fig. 2. Bit error rate Pb for the sequential scheme (SEQ), CCCP and BP in the cases of N ¼ 50 (a) and N ¼ 100 (b). The horizontal
axis represents Eb=N0 ¼ 10 log10ð1=ð2�20ÞÞ. The markers denotes experimental values estimated by 10000 numerical simulations
in which the correct noise parameters �2 ¼ �20 were used. OPT indicates performance obtained when the channel is accessed
by only a single user.
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correct parameters �2 ¼ �20 were used. For comparison, results for BP and CCCP-based algorithms [10, 17] are also
presented. These figures indicate that the current scheme (SEQ) exhibits performance close to the optimal in the case of
N ¼ 100 although performance for N ¼ 50 is considerably worse than that for CCCP. However, our scheme can still be
practically useful because CCCP requires a more computational cost of OðN2KÞ per update than that of the current
scheme (OðNKÞ), which practically limits applicability of CCCP to relatively small systems. Figures 3(a) and (b) show
Pb in the case of parameter mismatch �2 ¼ 0:01�20 . Other conditions are same as those in Figs. 2(a) and (b). These
indicates that performance of the current scheme is not necessarily good when a too small parameter is used. When �2

is set below a critical value for given � and �20 , the de Almeida–Thouless stability [19] can be broken in this system in
the limit of N;K ! 1 [16, 17], which implies that the Bethe free energy can possess many local minima. Deterioration
of performance of the current scheme may be because the local minima are adequately found. Such property is
preferred in examination of a complex structure of RSB in spin glass research.

V. Summary

In summary, we have developed a method for performing the Bethe approximation in Ising spin systems. The
method is based on a property of the Bethe free energy that diagonal elements of the Hessian are generally positive.
This guarantees that solving the extremum condition with respect to a single element at each update yields a unique
solution, which can be quickly found by efficient methods, and update to the solution generally decreases the Bethe free
energy. Therefore, sequentially solving the extremum condition with respect to a single element probably converges to
a local minimum. Property of this scheme has been examined by application to the CDMA multiuser detection
problem, which indicates that performance close to the optimal can be achieved for a case of mediate size with
computational cost of OðNKÞ per sequential update although the performance considerably deteriorates when the Bethe
free energy can have many local minima. This may be an evidence that the current scheme can adequetely find various
local minima.

Application to a problem of spin glasses can be found in [20].
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