
Analysis of Some Lockout Avoidance Algorithms
for the k-Exclusion Problem

Michiko OMORI1�, Kumiko OBOKATA2y, Kazuhiro MOTEGI3z and Yoshihide IGARASHI3z

1Business Networks Division, NEC Corp., Abiko, Chiba 270-1198, Japan
2Semiconductor Company, Sanyo Electric Corp., Oizumi, Gunma 370-0596, Japan

3Department of Computer Science, Gunma University, Kiryu 376-8515, Japan

Received May 9, 2002; final version accepted September 9, 2002

We analyze two algorithms for the k-exclusion problem on the asynchronous multi-writer/reader shared memory
model and show their correctness. The first algorithm is a natural extension of the n-process algorithm by Peterson
for the mutual exclusion algorithm to the k-exclusion problem, and the second algorithm is a combination of the
first algorithm and the tournament algorithm by Peterson and Fischer for the mutual exclusion problem. These two
algorithms satisfy k-exclusion, and can tolerate up to k � 1 process failures of the stopping type. The running times
by the first algorithm and by the second algorithm are bounded by ðn� kÞcþ Oðnðn� kÞ2Þl and
ðn
k
Þkcþ Oððn

k
Þkþ1kÞl, respectively, even if there exist at most k � 1 process failures of the stopping type, where

n is the number of processes, l is an upper bound on the time between successive two atomic steps for any faultless
process, and c is an upper bound on the time that any user spends in the critical region.

KEYWORDS: asynchronous processes, concurrent computation, k -exclusion, lockout avoidance,
shared memory

1. Introduction

Mutual exclusion is a problem of managing access to a single indivisible resource that can only support one user at a
time. An early algorithm for the mutual exclusion problem was proposed by Dijkstra [8]. Since then the problem has
been widely studied for its theoretical interests as well as for its practical applications to distributed systems
[5–7, 14, 15, 18–20, 26, 27]. The k-exclusion problem is a natural extension of the mutual exclusion problem. In k-
exclusion, some number of processes, specified by parameter k, are allowed to be concurrently inside the critical region,
where corresponding users can use the resource. This extension was first defined and solved by Fischer et al. on the
shared memory model [11].

The solution by Fischer et al.[11] can tolerate the slowdown or even the crash (i.e., stopping failure) of up to k � 1

processes, but it was based on the use of a powerful primitive, read-modify-write. For a read-modify-write shared
variable, in one atomic step a process is able to access the shared variable, and to use the variable value and the process
state to determine a new variable value and a new process state [21]. Such a shared variable is considered to be too
powerful to be realized by less powerful shared variables. The algorithm by Fischer et al. is a first-in, first-enable
solution to the k-exclusion problem, where by ‘‘enable’’, we mean that a process no longer needs to wait for action by
any other process before it can go into its critical region. Afek et al. [2] gave another solution to the first-in, first-enable
k-exclusion problem. Unlike the solution by Fischer et al. this solution does not use a powerful read-modified-write
primitive. A number of k-exclusion algorithms have been also proposed in the asynchronous network setting [17, 28].
The major paradigms for the resource allocation problem on the asynchronous network setting are the permission based
ones and the token based ones. For example, the algorithm proposed by Kakugawa et al. [17] and the algorithm
proposed by Raymond [28] are permission based.

On the asynchronous shared memory model, processes take steps at arbitrary speeds. The major difficulty of
designing an algorithm on such a model stems from the uncertainty in the order of events. A process can observe the
situations of other processes only through the shared memory. Hence, in general a process is uncertain whether other
processes are faultless. Even if a process observed that the contents of a shared variable concerning another process are
the same at the two different points in time, the former process cannot conclude that the latter process is stopping. It
may be moving very slowly, or took quickly a number of steps and then sent the original contents to the shared variable
during the time period. In other words, in general a process cannot specify which processes are faulty.

In this paper we consider two algorithms for the k-exclusion problem on the asynchronous multi-writer/reader shared
memory model. The formal definition of this model is given in [4, 21]. The first algorithm is a natural extension of the
n-process algorithm by Peterson [26] or its accelerated versions by Igarashi and Nishitani [15] for the mutual exclusion

� E-mail: m-oomori@dc.jp.nec.com
y E-mail: OBOK021850@swan.sanyo.co.jp
z E-mail: {motegi,igarashig@comp.cs.gunma-u.ac.jp

Interdisciplinary Information Sciences, Vol. 8, No. 2, pp. 187–198 (2002)

problem. The algorithm has been presented in [24, 25]. The second algorithm is a combination of the first algorithm and
the tournament algorithm by Peterson and Fischer [27] for the mutual exclusion problem or a variation of the algorithm
accelerated by Igarashi, et al. [14]. Although the running times of these two algorithms in the worst case are not as good
as the best known algorithm using a bounded concurrent time-stamp scheme [4], their structures are simple and they are
reasonably fast in the case where the number of competitors wishing to enter the critical region is small. We show the
correctness of these algorithms, and give their running times in the worst case. One of the aims of this paper is to
introduce some techniques for analyzing time complexity and for proving correctness of asynchronous algorithms.

We only consider the simplest type of process failures: a stopping failure, whereby a process just stops without
warning. We do not consider less well-behaved Byzantine failures. Both the algorithms are immune to stopping failures
of fewer than k processes, and they are wait-free if the number of processes attempting to get the critical region is at
most k, but in general not first-in, first-enable. All logarithms in this paper are to the base 2. The shared memory size for
the first algorithm is ðn� kÞdlog ne þ ndlogðn� k þ 1Þe bits. It is particularly space economical for a k such that
n� k ¼ Oð1Þ. The shared memory size for the second algorithm is not much different from the shared memory size for
the first algorithm. We describe our algorithms in terms of I/O automata. A full description of I/O automata is given in
[21, 23].

In order to estimate upper bounds on the running times of the algorithms, we impose an upper bound of l on the time
between successive atomic steps of each faultless process in the trying region and the exit region, and an upper bound
of c on the time that any user spends in the critical region. The running time by the first algorithm and the running time
by the second algorithm for the trying regions are bounded by ðn� kÞcþ Oðnðn� kÞ2Þl and ðn

k
Þkcþ Oððn

k
Þkþ1kÞl,

respectively. In general, the worst case running time of a process by the second algorithm is worse than the worst case
running time by the first algorithm. However, in the case where the number of competitors is small, the second
algorithm is faster than the first algorithm. When k ¼ 1 (i.e., the mutual exclusion case), the worst case running time of
the first algorithm is better than the worst case running time Oðn2Þcþ Oðn4Þl of the original n-process algorithm by
Peterson [15, 26] and as good as the worst case running times of the accelerated versions by Igarashi and Nishitani [15].
The worst case running time of the second algorithm for k ¼ 1 is as good as the worst case running time of the original
tournament algorithm by Peterson and Fischer [27] for the mutual exclusion problem, but worse than the worst case
running time ðn� 1Þcþ OðnÞl of its accelerated version by Igarashi et al. [14].

The rest of this paper is organized as follows: Sect. 2 contains the computational model in terms of I/O automata and
the definition of k-exclusion problem. In Sect. 3, a lockout avoidance algorithm with n� k levels (i.e., our first
algorithm) is given, and in Sect. 4 its correctness is shown. The worst case running time of the algorithm is also given
in Sect. 4. In Sect. 5, a group tournament algorithm (i.e., our second algorithm) is given. In Sect. 6, the correctness of
the group tournament algorithm is shown, and the worst case running time of the algorithm is also given in Sect. 6. In
Sect. 7, we compare the time and space efficiencies of the two algorithms as well as an algorithm using a bounded
concurrent time-stamp scheme. Concluding remarks are given in Sect. 8.

2. Preliminary

The computational model used in this paper is the asynchronous multi-writer/reader shared memory model. It is a
collection of processes and shared variables. Interactions between a process and its corresponding user are by input
actions from the user to the process and by output actions from the process to the user. Each process is considered to be
a state machine with arrows entering and leaving the process, representing its input and output actions. All
communication among the processes is via the shared memory. The model is called an I/O automaton. This model can
be considered to be a full description of the asynchronous shared memory model of Lynch and Fischer [22]. We assume
that the order of actions by processes is linearizable. For example, even if two different processes try to write on the
same shared variable at almost the same time, one process’s writing is earlier than the other process’s writing. Thus the
contents of the shared variable written by the earlier one is changed to the contents written by the later one even if these
two events occur very closely. The reader can find a complete and formal description of the model in [21, 22].

A user with access to the resource is modeled as being in the critical region. When a user is not involved in the
resource, it is said to be in the remainder region. In order to gain admittance to the critical region, a process executes a
trying protocol. The duration from the start of executing the trying protocol to the entrance of the critical region is
called the trying region. After the end of the use of the resource by a user, the corresponding process executes an exit
protocol. The duration of executing the exit protocol is called the exit region. These procedures can be repeated in
cyclic order, from the remainder region to the trying region, then to the critical region, then to the exit region, and then
back again to the remainder region. The k-exclusion problem is to devise a protocol for at most k processes to be
concurrently in the critical region. When k ¼ 1, the k-exclusion problem is the mutual exclusion problem.

We assume that the n processes are numbered 0; . . . ; n� 1. Each process i (0 � i � n� 1) corresponds to user Ui.
The inputs to process i from user Ui are tryi which means a request by user Ui for access to the resource, and exitsi
which means an announcement of the end of the use of the resource by Ui. The outputs from process i to user Ui are
criti which means the grant of the resource to Ui, and remi which tells Ui that it can continue with the rest of its work
not concerning the use of the resource. These are external actions of the shared memory system.

188 OMORI, OBOKATA, MOTEGI and IGARASHI

The system to solve the k-exclusion problem should satisfy the following conditions.
(1) There is no reachable system state in which more than k processes are in the critical region.
(2) If at least one faultless process is in the trying region and less than k processes are in the critical region, then at

some later point some process enters the critical region.
(3) If a faultless process is in the exit region, then at some later point the process enters the remainder region.
(4) If all users always return the resource and if the number of faulty processes of the stopping type is at most k � 1,

then any faultless process wishing to enter the critical region eventually does so.
Conditions (1), (2), (3) and (4) above are called k-exclusion, progress for the trying region, progress for the exit

region, and k-lockout avoidance, respectively. Note that k-lockout avoidance is a property stronger than lockout
freedom. That is, k-lockout avoidance is not only fair to different users but also immune to at most k � 1 stopping
failures of processes.

The following procedure ðn; kÞ-NAIVE is a naive modification of the n-process algorithm by Peterson [26]. When
k ¼ 1, it is the n-process algorithm by Peterson for the mutual exclusion problem.

procedure ðn; kÞ-NAIVE
shared variables
for every s 2 f1; . . . ; n� kg:
turnðsÞ 2 f0; . . . ; n� 1g, initially arbitrary, writable and readable by all processes;

for every i 2 f0; . . . ; n� 1g:
levelðiÞ 2 f0; . . . ; n� kg, initially 0, writable by i and readable by all j 6¼ i;

process i
input actions {inputs to process i from user Uig:
tryi, exiti;

output actions {outputs from process i to user Uig:
criti, remi;

** Remainder region **
tryi:
for s ¼ 1 to n� k do
begin
levelðiÞ :¼ s;
turnðsÞ :¼ i;
waitfor [8j 6¼ i : levelðjÞ < s] or [turnðsÞ 6¼ i]

end;
criti;
** Critical region **
exiti:
levelðiÞ :¼ 0;

remi;

By ðn; kÞ-NAIVE, a process in the trying region climbs n� k levels until it reaches the critical region. The value of
levelðiÞ shows a level which process i reaches. ‘‘turnðsÞ ¼ i’’ shows that process i is the last process which has reached
level s in the trying region. Procedure ðn; kÞ-NAIVE is k-exclusion, and if there are no faulty processes then it is lockout-
free. That is, it satisfies condition (1) above, and if there are no faulty processes then any process in the trying region
enters eventually the critical region. This means that ðn; kÞ-NAIVE is a correct algorithm for the k-exclusion problem
under the condition that there are no faulty processes. However, ðn; kÞ-NAIVE does not provide k-lockout avoidance,
since if a process crashes at a level, say level s, in the trying region then any process at a level below level s in the
trying region is blocked unless some process enters the level and changes the value of shared variable turnðsÞ. The
difference between lockout freedom and lockout avoidance may become clear from this explanation. Lockout freedom
guarantees the progress of any process in the trying region if there are no faulty processes, but may not guarantee its
progress when there are faulty processes. On the other hand, k-lockout avoidance guarantees the progress of any
faultless process in the trying region if the number of faulty processes is less than k. It is not difficult to show that if
there are no faulty processes then the running time by ðn; kÞ-NAIVE for the trying region of any process is bounded by
Oððn� kÞ2Þcþ Oðnðn� kÞ3Þl. We can obtain this bound in a similar way to the way given in [15].

3. A Lockout Avoidance Algorithm with n� k Levels

As stated in the previous section, the first condition in the waitfor statement (i.e., [8j 6¼ i : levelðjÞ < s]) of the
procedure ðn; kÞ-NAIVE (as well as the n-process algorithm by Peterson [26]) may prevent the move of process i to a
higher level when some process at a higher level stops or slow down. We propose a simple lockout avoidance algorithm

Analysis of Some Lockout Avoidance Algorithms for the k-Exclusion Problem 189

for the k-exclusion problem on the multi-writer/reader shared memory model. This algorithm is similar to the n-process
algorithm by Peterson [26], but the condition in the waitfor statement is modified so that k-lockout avoidance is
satisfied. In the n-process algorithm by Peterson [15, 26] or the second accelerated version by Igarashi and Nishitani
[15] for the mutual exclusion problem, the condition ‘‘[8j 6¼ i : levelðjÞ < s] or [turnðsÞ 6¼ i]’’ should be satisfied to
move process i from level s to level sþ 1. We cannot use this condition in our algorithm, since k-lockout avoidance is
required. The condition ‘‘[8j 6¼ i : levelðjÞ=2fs; sþ 1g] or [turnðsÞ 6¼ i]’’ used in the first accelerated version by Igarashi
and Nishitani [15] cannot be used either in our algorithm from the same reason. We modify the first part of the
condition in the waitfor statement for our purpose. The lockout avoidance algorithm for solving k-exclusion among n
processes is described in the following procedure named ðn; kÞ-EXCL. In ðn; kÞ-EXCL, a process at level s, say process i,
tests whether the number of other processes at level s or above level s is at most n� s� 1, or whether the contents of
turnðsÞ are not i. When the test result is affirmative, the process is allowed to move to level sþ 1 (or granted to enter the
critical region in the case where s ¼ n� k). In this way, the process moves to higher levels one by one, and eventually
reaches the position where it is granted to enter the critical region.

procedure ðn; kÞ-EXCL
shared variables
for every s 2 f1; . . . ; n� kg:
turnðsÞ 2 f0; . . . ; n� 1g, initially arbitrary, writable and readable by all processes;

for every i 2 f0; . . . ; n� 1g:
levelðiÞ 2 f0; . . . ; n� kg, initially 0, writable by i and readable by all j 6¼ i;

process i
input actions {inputs to process i from user Uig:
tryi, exiti;

output actions {outputs from process i to user Uig:
criti, remi;

** Remainder region **
tryi:
for s ¼ 1 to n� k do
begin
levelðiÞ :¼ s;
turnðsÞ :¼ i;
waitfor [jfjjj 6¼ i : levelðjÞ � sgj � n� s� 1] or [turnðsÞ 6¼ i]

end;
criti;
** Critical region **
exiti:
levelðiÞ :¼ 0;

remi;

For each level s (1 � s � n� kÞ, statement ‘‘waitfor[jfj j j 6¼ i : levelðjÞ � sgj � n� s� 1] or [turnðsÞ 6¼ i]’’ in
ðn; kÞ-EXCL is not atomic step. It consists of a number of atomic steps as given in the following procedure checkiðn; sÞ
for checking the condition by process i at level s. Note that procedure checkiðn; sÞ is not a snapshot algorithm. The
reader may be referred [1, 3, 4, 21] for snapshot algorithms. In other words, for each s, the contents of the local variable
count is not guaranteed to represent the exact number of other processes that are located at level s or above level s at a
particular point in time. Since the shared memory used in this paper is not the read–modified–write model, this
uncertainty cannot be avoided unless we use a snapshot algorithm. Nevertheless the uncertain information about the
number of processes at level s or above level s in the local variable count together with the contents of shared variable
turnðsÞ is good enough to guarantee k-exclusion as proved in Sect. 4. The use of a snapshot algorithm may make the
space efficiency and the time efficiency worse.

procedure checkiðn; sÞ
shared variables
turnðsÞ 2 f0; . . . ; n� 1g
for every j 2 f0; . . . ; n� 1g:
levelðjÞ 2 f0; . . . ; n� kg

L:
count :¼ 0;
for each j 2 f0; . . . ; i� 1; iþ 1; . . . ; n� 1g do

190 OMORI, OBOKATA, MOTEGI and IGARASHI

begin
v :¼ levelðjÞ;
if v � s then count :¼ count þ 1;

end;
v :¼ turnðsÞ;
if count � n� s� 1 or v 6¼ i then return true
else goto L;

In an execution by ðn; kÞ-EXCL, process i is said to be a winner at level s if it has left the waitfor statement in the sth
loop of the for statement. Note that if a process is a winner at level s then any 1 � t � s, the process is also a winner at
level t. For each i (0 � i � n� 1), when process i has entered the exit region, the qualification for the winner of process
i is canceled by resetting levelðiÞ :¼ 0. The next example may be helpful for the reader to understand the behavior of
processes in an execution by ðn; kÞ-EXCL.

Example 1. The following scenario is possible in a fair execution by ðn; kÞ-EXCL. Let n ¼ 4 and k ¼ 2. Assume that
process 0, process 1, process 2 and process 3 entered the trying region in this order. Then process 0, process 1 and
process 2 became winners at level 1 by observing that the latter part of the condition in the waitfor statement is satisfied
(i.e., turnð1Þ 6¼ i for i ¼ 0; 1; 2). Assume that these winners moved to level 2 in the order of process 2, process 0 and
process 1. Then process 0 and process 2 became the winners at level 2 by observing that the latter part of the condition
in the waitfor statement is satisfied, and these two winners were granted to enter the critical region. After at least one of
these two processes exited the critical region, process 1 became a winner at level 2 by observing that the former part of
the condition in the waitfor statement (i.e., jfj j j 6¼ 1 : levelðjÞ � 2gj � 1) is satisfied, and then it is granted to enter
the critical region.

4. Correctness for ðn; kÞ-EXCL

Without loss of generality, we may assume that any process is initially in the remainder region. However, the starting
time points of processors are in general different. For a faultless process it takes either an infinite number of steps or it
ends in the remainder region. Throughout this paper, we assume that the number of process failures is always at most
k � 1.

Lemma 1. In any reachable system state of ðn; kÞ-EXCL, for any 1 � s � n� k there are at most n� s winners at
level s.

Proof. The proof is an induction on levels. For the sake of the contrary, we assume that there are n winners at level 1
at some point in time � in an execution. Suppose that turnð1Þ ¼ i at �. Since all the processes are winners at level 1 at �,
such process i exists. Then process i has set most recently turnð1Þ before �. For any j 6¼ i, process j set levelðjÞ to be 1
before the time when turnð1Þ was set to be i. Hence, for each j 6¼ i, levelðjÞ 6¼ 0 during the time period from when
process i set turnð1Þ to be i until �. Then both the former part and the latter part of the condition for process i in the
waitfor statement at level 1 in ðn; kÞ-EXCL are not satisfied during the time period. Hence, process i cannot be a winner
at level 1 at �. This is contrary to the assumption that all the processes are winners at level 1 at �.

Let s � 2. Assume that for any r < s, there are at most n� r winners at level r in any reachable system state. For the
sake of the contrary, we assume that there are more than n� s winners at level s at a point in time �. Among the
winners at level s at �, let process i be the process that set turnðsÞ most recently before �. Then any process j (j 6¼ i) in
the set of the winners at level s at �, levelðjÞ � s during the time period from when process i set turnðsÞ to be i until �.
Hence, during this time period the former part of the condition for process i in the waitfor statement at level s in ðn; kÞ-
EXCL is not satisfied. Since process i is also a winner at level s at �, the latter part of the condition for process i in the
waitfor statement must be satisfied at some point in time during the time period. This means that some process, say
process p, not in the set of the winners at level s at � must set turnðsÞ to be p at some point in time during the time
period. Then process p is a winner at level s� 1 at that point in time. Then the number of winners at level s� 1 at that
point in time is more than n� sþ 1. This is contrary to the induction hypothesis. Therefore. the assertion of the lemma
holds true for any 1 � s � n� k. �

The existence of any number of process failures of the stopping type including slowdown processes does not affect
the proof of Lemma 1. Hence, the next theorem is from Lemma 1.

Theorem 2. ðn; kÞ-EXCL guarantees k-exclusion even if any number of process failures of the stopping type exist.

It is obvious that ðn; kÞ-EXCL guarantees progress for the exit region. In order to prove progress for the trying region
and k-lockout avoidance, it is enough to give a time bound for the trying region in the case where at most k � 1

Analysis of Some Lockout Avoidance Algorithms for the k-Exclusion Problem 191

stopping failures of processes exist.

Theorem 3. Suppose that the number of stopping failures of processes is always at most k � 1. In any execution by
ðn; kÞ-EXCL, the time from when a faultless process enters the trying region until the process enters the critical region
is at most ðn� kÞcþ Oðnðn� kÞ2Þl.

Proof. For each s, 1 � s � n� k, define FðsÞ to be the maximum time from when a faultless process has entered the
competition at level s until it becomes a winner at level s. The worst situation is the case where k � 1 processes are
stopping at the entrance of the critical region or in the critical region. Such k � 1 faulty processes are winners at every
level by the definition of winners, and we may consider these k � 1 faulty processes are always competitors at every
level. Note that in general a process cannot decide whether other processes are moving or stopping. The slowest
situation for a faultless process at level n� k in the trying region to reach the critical region is the case where there are
k þ 1 winners at level n� k � 1 and all of them are competitors including the process itself at level n� k, and then the
process becomes a loser among them at level n� k. The time to recognize the existence of k winners at level n� k is at
most ð2nþ 3Þl, where we count 2 atomic steps for setting level values and turnðn� kÞ at level n� k, and at most
2nþ 1 steps to test the condition in the waitfor statement to be at most 2nþ 1 (i.e., computing time for each faultless
process to count the number of levelðjÞ’s with values not less than n� k and to check the value of turnðn� kÞ). Since
the number of stopping failures of processes is at most k � 1, it is not possible that all the k winners are faulty
processes. The time from the end of the competition at level n� k until the time when at least one faultless winner reset
its level value to 0 in the exit region is at most 3lþ c. Then the loser at level n� k becomes a winner at the level within
ð2nþ 1Þl time after the reset of the winner’s level value. Hence, Fðn� kÞ � ð4nþ 7Þlþ c.

The slowest situation for a faultless process at level s, 1 � s � n� k � 1, to become a winner at level s is the case
where there are n� sþ 1 competitors at level s, and then the faultless process becomes a loser at level s. Note that
some of the winners may stop due to their stopping failures after they become winners at level s. In particular, we may
assume the case where k � 1 processes are stopping at the entrance of the critical region. In this case the time to
recognize the existence of the n� s winners at level s is also at most ð2nþ 3Þl. The faultless loser at level s will become
a winner when a new process joins the competition at level s and then turnðsÞ to be its process name, or when at least
one winner at the level eventually resets its level value to 0 in the exit region. In the worst case, it is sufficient to
consider the latter case. In order that the loser at level s becomes a winner at the level, it must wait until at least one
winner at level s exits from the critical region. Since the number of faulty processes is at most k � 1, there exists a
faultless winner at the level. The quickest winner at level s can reach the critical region within ðn� k � sÞð2nþ 3Þl
time. Hence, the loser at level s can move as a winner at level s to level sþ 1 within FðsÞ � ðn� k � sþ 1Þð2nþ
3Þlþ ð2nþ 1Þlþ 3lþ c ¼ ðn� k � sþ 2Þð2nþ 3Þlþ lþ c time.

Thus the time from when a faultless process has entered the trying region until the process enters the critical region is
bounded by

Xn�k
s¼1

FðsÞ �
Xn�k�1

s¼1

½ðn� k � sþ 2Þð2nþ 3Þlþ lþ cÞ� þ ð4nþ 7Þlþ c � ðn� kÞcþ Oðnðn� kÞ2Þ: �

The following theorem is immediate from Theorem 2 and Theorem 3.

Theorem 4. ðn; kÞ-EXCL solves the k-exclusion problem, and it is k-lockout avoidance.

The running time of ðn; kÞ-EXCL in the trying region for a process is bounded by ðn� kÞcþ Oðnðn� kÞ2Þl. It is
possible to construct a scenario of the behavior of the n processes so that it leads the running time of a process in the
trying region as slow as the running time bound given in Theorem 3. Hence, we can claim that the bound given in
Theorem 3 is tight. We will compare its efficiency with the efficiencies of other algorithms in Sect. 7.

5. A Group Tournament Algorithm

We denote the null sequence (i.e., the sequence with length 0) by �. For a set of processes G, the lower half of G
means the set of djGj=2e lower numbered processes of G, and the upper half of G means the set of bjGj=2c higher
numbered processes of G. For example, if G ¼ f8; . . . ; 14g then the lower half of G is f8; 9; 10; 11g and the upper half of
G is f12; 13; 14g.

Let T ðn;kÞ be the complete binary tree with depth blogðn=ðk þ 1ÞÞc. Such a tree is called a tournament tree. Each node
of T ðn;kÞ is labeled by the following rule:
(1) The root of the tree is labeled by �.
(2) The left son and the right son of a node with label x are labeled by x0 and x1, respectively.

Let blðn; kÞ ¼ blogðn=ðk þ 1ÞÞc. For each binary sequence x with a length not longer than blðn; kÞ, Gx is a set of
processes defined as follows: G� ¼ f0; � � � ; n� 1g. If x ¼ x00 then Gx is the lower half of Gx0 , and if x ¼ x01 then Gx is

192 OMORI, OBOKATA, MOTEGI and IGARASHI

the upper half of Gx0 . For each node x of T
ðn;kÞ, the node x is associated with the set of processes Gx. For pairs of integers

we use the lexicographic order. That is, ði; jÞ < ði0; j0Þ if and only if i < i0, or i ¼ i0 and j < j0. For each pair of
0 � i � n� 1 and 0 � t � blðn; kÞ, gði; tÞ is defined to be x such that jxj ¼ t and i belongs to Gx. From the definitions of
Gx and blðn; kÞ, gði; tÞ is a well defined function on fði; tÞj0 � i � n� 1; 0 � t � blðn; kÞg.

Example 2. Let n ¼ 17 and k ¼ 3. Then T ð17;3Þ is the complete binary tree with depth blð17; 3Þ ¼ 2. G� ¼ f0; . . . ; 16g,
G0 ¼ f0; . . . ; 8g, G1 ¼ f9; . . . ; 16g, G00 ¼ f0; . . . ; 4g;G01 ¼ f5; . . . ; 8g, G10 ¼ f9; . . . ; 12g, G11 ¼ f13; . . . ; 16g,
gð5; 2Þ ¼ 01; gð5; 1Þ ¼ 0, and gð5; 0Þ ¼ �.

The next lemma is immediate.

Lemma 5. For any leaf x of T ðn;kÞ, jGxj is dn=2blðn;kÞe or bn=2blðn;kÞc, and k þ 1 � jGxj � 2k þ 2.

The group tournament algorithm works in the following way. For a leaf x of T ðn;kÞ, a process i in Gx joins the
competition for Gx whenever process i enters the trying region. We apply the technique used in procedure ðn; kÞ-EXCL
to the competitions. Each process engages in a series of k � blðn; kÞ þ jGgði;blðn;kÞÞj � k competitions. Then the number of
final winners of the competitions for Gx is at most k. For an inner node x of T ðn;kÞ, final winners from Gx0 and Gx1 can
join the competitions for Gx. Then for these winners from the competitions for Gx0 and Gx1, we apply again the
technique used in procedure ðn; kÞ-EXCL to the competitions for Gx. Repeating this way, we can choose at most k final
winners of the competition for G�. These final winners are allowed to enter the critical region.

Hereafter, for simplicity we assume that n ¼ 2tð2kÞ for a nonnegative integer t. Then we may consider only the case
where for each leaf x of T ðn;kÞ, Gx has 2k processes. For a general value for n, we need only minor modifications of the
group tournament algorithm and proofs given in the next section. Such modifications are tedious work and leave them
for the reader. The following procedure ðn; kÞ-GTEX is the group tournament algorithm for the k-exclusion problem,
where n ¼ 2blðn;kÞð2kÞ.

procedure ðn; kÞ-GTEX
shared variables
for every ðx; sÞ such that 0 � jxj � blðn; kÞ; 1 � s � k :
turnðx; sÞ 2 Gx, initially arbitrary, writable and readable by all processes in Gx;

for every i 2 G�:
levelðiÞ 2 fða; bÞj0 � a � blðn; kÞ; 1 � b � kg,
initially ð0; 0Þ, writable by i and readable by all j 6¼ i;

process i
input actions {inputs to process i from user Uig:
tryi, exiti;

output actions foutputs from process i to user Uig:
criti, remi;

** Remainder region **
tryi:
for p ¼ 0 to blðn; kÞ do
for q ¼ 1 to k do
begin
levelðiÞ :¼ ðp; qÞ;
turnðgði; blðn; kÞ � pÞ; qÞ :¼ i;
waitfor [jfjjj 6¼ i; j 2 Ggði;blðn;kÞ�pÞ : levelðjÞ � ðp; qÞgj � 2k � q� 1, or
turnðgði; blðn; kÞ � pÞ; qÞ 6¼ i]

end;
criti;
** Critical region **
exiti:
levelðiÞ :¼ ð0; 0Þ;

remi;

As the waitfor statement in ðn; kÞ-EXCL, the waitfor statement in ðn; kÞ-GTEX above is not an atomic step. It consists
of a number of atomic steps. Testing in the waitfor statement must alternate in some systematic way, for example, it can
be done in a cycle where the level’s are first tested, and then turn is tested as given in the following procedure
gcheckiðn; k;p; qÞ. It checks the condition in the waitfor statement by process i at level q for the competitions in
Ggði;blðn;kÞ�pÞ. Note again that the contents of local variable count does not necessarily represent the exact number of
other processes that locate at the same level as process i or above the level of process i. Since the shared memory in this

Analysis of Some Lockout Avoidance Algorithms for the k-Exclusion Problem 193

paper is not the read–modified–write type, this uncertainty cannot be avoided unless we use a snapshot algorithm. As
ðn; kÞ-EXCL, such uncertain information about the number of processes with level values satisfying the condition is
good enough for ðn; kÞ-GTEX to guarantee k-exclusion as proved in Sect. 6.

procedure gcheckiðn; k;p; qÞ
shared variables
turnðgði; blðn; kÞ � pÞ; qÞ 2 Ggði;blðn;kÞ�pÞ;
for every j 2 Ggði;blðn;kÞ�pÞ:
levelðjÞ 2 fða; bÞj0 � a � blðn; kÞ; 1 � b � kg;

L:
count :¼ 0;
for each j 6¼ i; j 2 Ggði;blðn;kÞ�pÞ do
begin
v :¼ levelðjÞ;
if v � ðp; qÞ then count :¼ count þ 1;

end;
v :¼ turnðp; qÞ;
if count � 2k � q� 1 or v 6¼ i then return true
else goto L;

6. Correctness for ðn; kÞ-GTEX

In an execution of ðn; kÞ-GTEX, process i is said to be a winner at ðp; qÞ for Ggði;blðn;kÞ�pÞ if the process has left the
waitfor statement in the qth inner for loop of the pth outer for loop. If a process i is a winner at ðp; qÞ for Ggði;blðn;kÞ�pÞ,
then for any ðp0; q0Þ � ðp; qÞ the process is also a winner at ðp0; q0Þ for Ggði;blðn;kÞ�p0Þ. For each i ð0 � i � n� 1Þ, when
process i has entered the exit region, the qualification as a winner for process i is canceled by resetting levelðiÞ :¼ ð0; 0Þ.
In an execution by ðn; kÞ-GTEX, if we say a competition at ðp; qÞ, it means a competition at level q of a group
competition in Gx associated with a node in depth blðn; kÞ � p of T ðn;kÞ. That is, it is a competition in the qth inner for
loop of the pth outer for loop of ðn; kÞ-GTEX.

The competition in each group (i.e., the competition specified by the inner for loop in ðn; kÞ-GTEX) is essentially the
same as an execution by ð2k; kÞ-EXCL. Hence, the next lemma holds true from Lemma 1.

Lemma 6. In any reachable system state of ðn; kÞ-GTEX, for any ðp; qÞ ð0 � p � blðn; kÞ; 1 � q � kÞ and any binary
sequence x of length blðn; kÞ � p, the number of winners in Gx at ðp; qÞ is at most 2k � q.

The existence of any number of stopping process failures does not affect the proof of Lemma 6. The next theorem is
therefore immediate from Lemma 6.

Theorem 7. ðn; kÞ-GTEX guarantees k-exclusion even if any number of process failures of the stopping type exist.

It is obvious that ðn; kÞ-GTEX guarantees progress for the exit region. In order to prove progress for the trying region
and k-lockout avoidance, it is enough to give a time bound for the trying region in the case where at most k � 1 process
failures of the stopping type exist.

Let us define a function fsðn; kÞ as follows:

fsðn; kÞ ¼ ð20 þ 21 þ � � � þ 2k�1Þ þ ð2kþ1 þ 2kþ2 þ � � � þ 22kÞ

þ ð22ðkþ1Þ þ 22ðkþ1Þþ1 þ � � � þ 23kþ1Þ þ � � �

þ ð2blðn;kÞðkþ1Þ þ 2blðn;kÞðkþ1Þþ1 þ � � �

þ 2blðn;kÞðkþ1Þþk�1Þ:

Lemma 8. Let n ¼ ð2kÞ � 2t for some non-negative integer t � 0. Then fsðn; kÞ ¼ Oððn
k
Þkþ1Þ.

Proof. By the definition of fsðn; kÞ,

fsðn; kÞ ¼ ð20 þ 21 þ � � � þ 2k�1Þð20 þ 2kþ1 þ � � � þ 2blðn;kÞðkþ1ÞÞ:

Since ð20 þ 21 þ � � � þ 2k�1Þ ¼ 2k � 1 and blðn; kÞ ¼ t,

fsðn; kÞ � 2kð20 þ 2kþ1 þ � � � þ 2blðn;kÞðkþ1ÞÞ ¼ Oð2ðblðn;kÞþ1Þðkþ1ÞÞ ¼ Oð2ðtþ1Þðkþ1ÞÞ:

194 OMORI, OBOKATA, MOTEGI and IGARASHI

Since 2tþ1 ¼ ðn=kÞ, fsðn; kÞ ¼ Oððn=kÞkþ1Þ. �

Theorem 9. Suppose that the number of stopping failures of processes is always at most k � 1. In any execution by
ðn; kÞ-GTEX, the time from when a faultless process enters its trying region until the process enters its critical region is
at most ðn

k
Þkcþ Oððn

k
Þkþ1kÞl.

Proof. Define Tðp; qÞ to be the maximum time from when a process reaches the entry of a competition at ðp; qÞ until it
enters the critical region. Then Tð0; 1Þ is the maximum time from when a process enters the trying region until it enters
the critical region. We want to bound Tð0; 1Þ.

We first bound Tðblðn; kÞ; kÞ. Consider the slowest case for process i in a competition at ðblðn; kÞ; kÞ to enter its critical
region. In such a case, k þ 1 processes including process i have entered the competition at ðblðn; kÞ; kÞ and process i will
be the last winner among them at the competition. When one of the winners earlier than process i at the competition
enters the exit region after spending in the critical region, process i is made possible to become a winner at the
competition. Since we assume that there are at most k � 1 stopping failures of processes, such an earlier winner exists.
The fact that some of earlier winners have entered their exit region can be detected by process i in the test for the
condition in the waitfor statement. Hence, we have

Tðblðn; kÞ; kÞ � ð2nþ d1Þlþ c;

where d1 is an appropriate constant independent of n and k.
For ðblðn; kÞ; qÞ; 1 � q � k � 1, consider again the slowest case for a process i in a competition at ðblðn; kÞ; qÞ to enter

the critical region. In such a case 2k � qþ 1 processes including process i have entered the competition at ðblðn; kÞ; qÞ.
The quickest process among the competitors at ðblðn; kÞ; qÞ can reach the critical region within ðnþ d1Þlþ
Tðblðn; kÞ; qþ 1Þ time. Since the number of stopping failures of processes is at most k � 1, such a process exists. Any
faultless competitor at ðblðn; kÞ; qÞ will be made possible to become a winner at the competition within further
ðnþ d1Þlþ c time. Hence, for each 2 � q � k,

Tðblðn; kÞ; qÞ � 2Tðblðn; kÞ; qþ 1Þ þ ð2nþ 2d1Þlþ c:

The number of level’s tested by a process in the waitfor statement in each loop for the competition at ðp; 1Þ is
ðn=2blðn;kÞ�p�1Þ � 1. Then by a similar argument, for each 0 � p � blðn; kÞ and each 1 � q � k,

Tðp; qÞ � 2Tðp; qþ 1Þ þ
2n

2blðn;kÞ�p
þ 2d1

� �
lþ c;

and for each 0 � p � blðn; kÞ � 1,

Tðp; kÞ � 2Tðpþ 1; 1Þ þ
2n

2blðn;kÞ�p
þ 2d1

� �
lþ c:

Let d be an appropriate constant such that 4k þ 2d1 � d � k. Then we have the following inequalities.

Tð0; 1Þ � 2Tð0; 2Þ þ cþ d � k � l

� 22Tð0; 3Þ þ ð20 þ 21Þcþ ð20 þ 21Þd � k � l

� � � �

� 2k�1Tð0; kÞ þ ð20 þ 21 þ � � � þ 2k�2Þcþ ð20 þ 21 þ � � � þ 2k�2Þd � k � l

� 2kTð1; 1Þ þ ð20 þ 21 þ � � � þ 2k�1Þcþ ð20 þ 21 þ � � � þ 2k�1Þd � k � l

� 2kþ1Tð1; 2Þ þ ð20 þ 21 þ � � � þ 2kÞcþ ð20 þ 21 þ � � � þ 2k�1 þ 2kþ1Þd � k � l

� � � �

� ð20 þ 21 þ � � � þ 2ðblðn;kÞþ1Þk�1Þcþ fsðn; kÞd � k � l

�
n

k

� �k
cþ O

n

k

� �kþ1

k

 !
l: �

We have the following theorem from Theorem 7 and Theorem 9.

Theorem 10. ðn; kÞ-GTEX solves the k-exclusion problem, and it is k-lockout avoidance.

Analysis of Some Lockout Avoidance Algorithms for the k-Exclusion Problem 195

7. Comparison among Algorithms

We first compare the shared memory sizes between ðn; kÞ-EXCL and ðn; kÞ-GTEX. The former algorithm uses n� k

shared variables taking n distinct values (turnðsÞ; 1 � s � n� k) and n shared variables taking n� k þ 1 distinct values
(levelðiÞ; 1 � i � n). Thus the total number of shared variables for ðn; kÞ-EXCL is 2n� k, and the total shared memory
size for ðn; kÞ-EXCL is ðn� kÞdlog ne þ ndlogðn� k þ 1Þe bits. For the latter algorithm, the number of turnðx; sÞ’s (x is
a binary sequence with length at most blðn; kÞ and 1 � s � k) is kð20 þ 21 þ � � � þ 2blðn;kÞÞ ¼ kð2blðn;kÞþ1 � 1Þ ¼
kððn=kÞ � 1Þ ¼ n� k, and the number of levelðiÞ’s (0 � i � n� 1) is n. Hence, the total number of shared variables
used by ðn; kÞ-GTEX is 2n� k. For ðn; kÞ-GTEX, each shared variable levelðiÞ (0 � i � n� 1) takes k logðn=kÞ þ 1

distinct values, and a shared variable turnðx; qÞ such that jxj ¼ p takes 2p distinct values. Hence, the total shared
memory size (bits) for ðn; kÞ-GTEX is not more than

n log k log
n

k

� �
þ 1

� �
þ k log nþ 2 log

n

2

� �
þ 22 log

n

22

� �
þ � � � þ 2blðn;kÞ logð2kÞ

� �

� n log k log
n

k

� �
þ 1

� �
þ ðn� kÞ log n:

Comparing the total shared memory sizes for ðn; kÞ-EXCL and ðn; kÞ-GTEX, in general the difference is not large. For
example, if k ¼ Oð1Þ, the total shared memory size for ðn; kÞ-EXCL is larger than the total shared memory size for
ðn; kÞ-GTEX, but the total size for the former is smaller than twice of the total size for the latter. In the case where
n� k ¼ Oð1Þ, the total shared memory size for ðn; kÞ-EXCL is only OðnÞ bits. In this case, ðn; kÞ-EXCL is more space
economical than ðn; kÞ-GTEX.

We next compare the total shared memory size for ðn; kÞ-EXCL with the total shared memory size for a k-exclusion
algorithm using a bounded concurrent time-stamp scheme. A time-stamp scheme is like a ticket machine. It enables the
representation of temporal relations among system objects. If any process can scan the existing tickets concurrently
with other processes and take a new ticket for its own, such a time-stamp scheme is called a concurrent time-stamp
scheme. Using a concurrent time-stamp scheme, an algorithm for the k-exclusion problem can be designed
[2, 4, 11, 12]. A number of bounded concurrent time-stamp schemes have been proposed [9–11, 13, 16]. When we use
the bounded concurrent time-stamp scheme (called the colored ticket algorithm) given in [11] for the read-modify-write
shared memory model, the number of distinct values of the shared memory is Oð 2k

k

� �
kn2Þ [11]. Hence, if we are allowed

to use the read-modify-write primitive, the total size of the shared memory for the bounded concurrent time-stamp
scheme is Oðk log k þ log nÞ. The shared memory used by the bounded concurrent schemes in [9, 10, 16] is the single-
writer/multi-reader shared memory type. Since realization of single-writer/reader shared memory is easier than multi-
writer/reader shared memory, an algorithm using such a time-stamp scheme for the k-exclusion problem is
advantageous over ðn; kÞ-EXCL and ðn; kÞ-GTEX. However, such a bounded concurrent time-stamp scheme contains
complicated construction of precedence graphs. In the case of the single-writer/multi-reader shared memory model, we
need n shared variables for bounded concurrent time-stamps, where each shared variable takes OðknÞ distinct values [4].
Hence, the total size of shared memory for the k-exclusion algorithm using such a bounded concurrent time-stamp
scheme [4] is Oðn log nÞ. In general, the total size of shared memory for the k-exclusion algorithm using a time-stamp
scheme on the single-writer/multi-reader shared memory model is not much different from the total size of shared
memory for ðn; kÞ-EXCL or ðn; kÞ-GTEX. In the case where n� k ¼ Oð1Þ, ðn; kÞ-EXCL needs only OðnÞ total size of
shared memory. In this case ðn; kÞ-EXCL is space economical compared with the method using such a bounded
concurrent time-stamp scheme for the k-exclusion problem.

Finally we compare running times of the algorithms. When n� k ¼ OðnÞ, the worst case running time of a process
by ðn; kÞ-EXCL is ðn� kÞcþ Oðn3Þl. When n� k ¼ Oð1Þ, the worst case running time of a process by ðn; kÞ-EXCL is
Oð1Þcþ OðnÞl. Hence, when n� k ¼ Oð1Þ, ðn; kÞ-EXCL is very fast. Comparing Theorem 3 and Theorem 9, the worst
case running time of a process by ðn; kÞ-GTEX is worse than the worst case running time of a process by ðn; kÞ-EXCL.
However, this does not simply imply that ðn; kÞ-GTEX is less efficient than ðn; kÞ-EXCL. The average running time by
ðn; kÞ-GTEX and the average running time by ðn; kÞ-EXCL seem to be not much different when many processes are
always seeking the critical regions, although we have not strictly analyze their average case running times. In the case
where the number of competitors is always small, ðn; kÞ-GTEX is even faster than ðn; kÞ-EXCL. For example, consider a
time duration where the number of competitors is not more than k. During such a duration, the worst case running time
of a process from the entrance of the trying region to the entrance of the critical region by ðn; kÞ-EXCL is bounded by
ððn� kÞðnþ 2Þ þ 1Þl. On the other hand, during such a duration, the worst case running time of a process from the
entrance of the trying region to the entrance of the critical region by ðn; kÞ-GTEX is bounded by

ðð2þ ð2kÞ � 20Þ þ ð2þ ð2kÞ � 21Þ þ � � � þ ð2þ ð2kÞ � 2blðn;kÞ þ 1ÞÞl

� ð2ðblðn; kÞ þ 1Þ þ 2kð2blðn;kÞþ1 � 1Þ þ 1Þl ¼ 2 log
n

k

� �
þ 2ðn� kÞ þ 1

� �
l:

196 OMORI, OBOKATA, MOTEGI and IGARASHI

Hence, in the case where the number of competitors is fairly small, ðn; kÞ-GTEX is faster than ðn; kÞ-EXCL.
When k ¼ 1, the k-exclusion problem is the mutual exclusion problem. The worst case running time for the trying

region by ðn; 1Þ-EXCL is ðn� 1Þcþ Oðn3Þl which is better than the worst case running time for the trying region by the
n-process algorithm by Peterson [15, 26], Oðn2Þcþ Oðn4Þl. The worst case running time by ðn; 1Þ-EXCL is the same as
within a constant factor as the worst case running time by accelerated version given in [15]. The worst case running
time for the trying region by ðn; 1Þ-GTEX is the same within a constant factor as the worst case running time for the
trying region by the tournament algorithm for the mutual exclusion problem by Peterson and Fischer [27], but worse
than the worst case running time ðn� 1Þcþ OðnÞl of the accelerated version by Igarashi et al. [14]

The running time of a process in the trying region by an algorithm using a bounded concurrent time-stamp scheme
[4] for the k-exclusion problem is bounded by Oðn

k
ðcþ nlÞ þ tsðnÞlÞ, where tsðnÞ is the running time of the time-stamp

scheme to obtain a new time-stamp by a process. The algorithm satisfies k-lockout avoidance, too. A bounded
concurrent time-stamp scheme in linear time and Oðr � mÞ space was proposed in [16], where r is the number of
scanners and m is the sum of the number of scanners and the number of labelers used by the scheme. The shared
variables used by the linear time scheme are the single-writer/multi-reader shared memory type. It consists of m
processes of two kinds, scanners and labelers, by which a labeling protocol and a scanning protocol are executed. The
scheme is described in such a form that labeling activity and scanning activity separated into two kinds of processes
[16]. To solve the k-exclusion problem using the time-stamp scheme in a distributed system, each process should have
both functions as a labeler and a scanner. The running time of a process by ðn; kÞ-EXCL or by ðn; kÞ-GTEX is not as
good as the k-exclusion algorithm using the linear time bounded concurrent time-stamp scheme. However, in practice
the implementation of a bounded concurrent time-stamp scheme is not easy since the algorithm is very complicated.
For k such as n� k ¼ Oð1Þ or n� k ¼ oðnÞ, ðn; kÞ-EXCL is fast. For example, when n� k ¼ Oð1Þ, the running time in
the trying region of a process by ðn; kÞ-EXCL is linear in n. In such a case, ðn; kÞ-EXCL is as fast as the k-exclusion
algorithm using the linear time bounded time-stamp scheme.

8. Concluding Remarks

We have proposed two lockout avoidance algorithms, ðn; kÞ-EXCL and ðn; kÞ-GTEX, for the k-exclusion problem on
the asynchronous multi-writer/reader shared memory model. We proved the correctness of these algorithms and
compared their efficiencies. In an execution by ðn; kÞ-EXCL or ðn; kÞ-GTEX, each process observes the number of
winners at a level, but its observation is somewhat uncertain. We showed that such uncertain information is still good
enough to guarantee k-exclusion and k-lockout avoidance. The structure of each of these algorithms is simple.
However, we use multi-writer/reader shared variables, turnðsÞ’s in ðn; kÞ-EXCL and turnðx; sÞ’s in ðn; kÞ-GTEX. Other
shared variables used by these algorithms are the single-writer/multi-reader shared memory type. The main
disadvantage of these algorithms is the use of multi-writer/reader shared variables. The functions of turnðsÞ’s in ðn; kÞ-
EXCL and turnðx; sÞ’s in ðn; kÞ-GTEX are essentially the same. That is, the last process arrived at a level can be observed
by checking a turnðsÞ or a turnðx; sÞ. This function is called the turn function. At present we do not know whether the
turn function can be simply simulated by single-writer/multi-reader shared variables, although it can be simulated by a
general method simulating a multi-writer/reader shared variable by single-writer/multi-reader shared variables. The
general method of such simulation is considerably complicated [4]. In other words, at present we do not know whether
the simulation of the turn function by single-writer/multi-reader shared variables is simpler than the construction of a
bounded concurrent time-stamp scheme on the single-writer/multi-reader shared memory model. If we are successful in
designing a simple method of realizing the turn function on the single-writer/multi-reader shared memory model, we
can design a simple algorithm for giving the temporal relation among processes in the asynchronous distributed system.

Although the total size of the share memory required by by ðn; kÞ-EXCL or ðn; kÞ-GTEX is reasonable, we are
interested in a problem whether some modifications of these algorithms can reduce the shared memory size. We are
also interested in a problem whether we can speed up our algorithms by some modifications for some cases, e.g., the
case where both k and n� k are �ðnÞ, or the case where k or n� k is Oð1Þ. The k-assignment problem is closely related
to the k-exclusion problem [4]. We are tempted to design a simple and efficient algorithm using similar techniques for
the k-assignment problem on the asynchronous shared memory model. These problems would be worthy of further
investigation.

REFERENCES

[1] Afek, Y., Attiya, H., Dolev, D., Gafni, E., and Merritt, M., (1993), Atomic snapshots of shared memory, J. ACM, 40: 873–890.
[2] Afek, Y., Dolev, D., Gafni, E., Merritt, M., and Shavit, N., (1994), A bounded first-in, first-enable solution to the l-exclusion

problem, ACM Trans. Program. Lang. Syst., 16: 939–953.
[3] Attiya, H., and Rachman, O., (1993), Atomic snapshots in Oðn log nÞ operations, 12th Annu. ACM Symp. Principles of

Distributed Computing, Ithaca, New York, 29–40 .
[4] Attiya, H., and Welch, J., (1998), Distributed Computing: Fundamentals, Simulations and Advanced Topics, McGraw-Hill,

New York.
[5] Burns, J. E., Jackson, P., Lynch, N. A., Fischer, M. J., and Peterson, G. L., (1982), Data requirements for implementation of N-

Analysis of Some Lockout Avoidance Algorithms for the k-Exclusion Problem 197

process mutual exclusion using a single shared variable, J. ACM, 29: 183–205.
[6] Burns J. E., and Lynch, N. A., (1993), Bounds on shared memory for mutual exclusion, Inf. Comput., 107: 171–184.
[7] Cremers, A. B., and Hibbard, T. N., (1978), Mutual exclusion of N processors using an OðNÞ-valued message variable, 5th Int.

Colloq. Automata, Languages and Programming, Udine, Italy, Lecture Notes Comput. Sci., 62: 165–176.
[8] Dijkstra, E. W., (1965), Solution of a problem in concurrent programming control, Commun. ACM, 8: 569.
[9] Dolev, D., and Shavit, N., (1989), Bounded concurrent time-stamp systems are constructible, 21st Annu. ACM Symp. Theory

of Computing, New York, 454–465.
[10] Dwork, C., and Waarts, O., (1992), Simple and efficient bounded concurrent timestamping or bounded concurrent timestamp

systems are comprehensible, 24th Annu. ACM Symp. Theory of Computing, Victoria, Canada, 655–666.
[11] Fischer, M. J., Lynch, N. A., Burns, J. E., and Borodin, A., (1979), Resource allocation with immunity to limited process

failure, 20th Annu. Symp. Foundations of Computer Science, San Juan, Puerto Rico, 234–254.
[12] Fischer M. J., Lynch, N. A., Burns, J. E., and Borodin, A., (1989), Distributed FIFO allocation of identical resources using

small shared space, ACM Trans. Program. Lang. Syste. 11: 90–114.
[13] Halder, S., and Vitanyi, P., (2002), Bounded concurrent timestamp systems using vector clocks, J. ACM, 49: 101–126.
[14] Igarashi, Y., Kurumazaki, H., and Nishitani, Y., (1999), Some modifications of the tournament algorithm for the mutual

exclusion problem, IEICE Trans. Inf. Syst., E82-D: 368–375.
[15] Igarashi, Y., and Nishitani, Y., (1999), Speedup of the n-process mutual exclusion algorithm, Parallel Process. Lett. 9: 475–

485.
[16] Israeli, A., and Pinhasov, M., (1992), A concurrent time-stamp scheme which is linear in time and space, 6th Int. Workshop on

Distributed Algorithms, Haifa, Israel, Lecture Notes Comput. Sci., 647: 95–109.
[17] Kakugawa, H., Fujita, S., Yamashita, M., and Ae, T., (1994), A distributed k-mutual exclusion algorithm using k-coterie, Inf.

Process. Lett., 49: 213–218.
[18] Lamport, L., (1986), The mutual exclusion problem. Part II: Statement and solutions, J. ACM, 33: 327–348.
[19] Lamport, L., (1974), A new solution of Dijkstra’s concurrent programming problem, Commun. ACM, 17: 453–455.
[20] Lamport, L., (1987), A fast mutual exclusion algorithm, ACM Trans. Comput. Syst., 5: 1–11.
[21] Lynch, N. A., (1996), Distributed Algorithms, Morgan Kaufmann, San Francisco, California.
[22] Lynch, N. A., and Fischer, M. J., (1981), On describing the behavior and implementation of distributed systems, Theor.

Comput. Sci., 13: 17–43.
[23] Lynch, N. A., and Tuttle, M. R., (1987), Hierarchical correctness proofs for distributed algorithms, 6th Annu. ACM Symp.

Principle of Distributed Computing, Vancouver, Canada, 137–151.
[24] Obokata, K., Omori, M., and Igarashi, Y., (2000), A lockout avoidance algorithm for the k-exclusion problem, IEICE Tech.

Rep., Comp 2000-54, 33–40.
[25] Obokata, K., Omori, M., Motegi, K., and Igarashi, Y., (2001), A lockout avoidance algorithm without using time-stamps for

the k-exclusion problem, 7th Annu. Int. Computing and Combinatorics Conf., Guilin, China, Lecture Notes Comput. Sci.,
2108: 571–575.

[26] Peterson, G. L., (1981), Myths about the mutual exclusion problem, Inf. Process. Lett., 12: 115–116.
[27] Peterson, G. L., and Fischer, M. J., (1977), Economical solutions for the critical section problem in a distributed system, Proc.

9th Annu. ACM Symp. Theory of Computing, Boulder, Colorado, 91–97.
[28] Raymond, K., (1989), A distributed algorithm for multiple entries to a critical section, Inf. Process. Lett. 30: 189–193.

198 OMORI, OBOKATA, MOTEGI and IGARASHI

