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Let b(n, w) be the number of occurrences of subblock w in the p-adic expansion of n & N and set B(N, w) = ., b(n, w)
for N e N. Properties of the value of B(N, w) were investigated by Prodinger [8] (for p = 2) and by Kirschenhofer [3]
(for a general p). In this paper we give a simple representation of B(/N, w) by means of previous result [5] on the explicit
formula of generalized power and exponential sums of digital sums.
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1 [Introduction

Let p be a positive integer greater than 1 and denote the p-adic expansion of n € Nbyn = X, as(n)p’, where
ai(nye {0,1,--+,p — 1}. Weset s(n, Iy = Zino Ligm=n forl =1,2,--+,p — 1, and s(n) = =2\ Is(n, [),).
We define the power sum and the exponential sum of s(#n) by

N-1

SiN) = ¥ s(n), ke N,

n=90

N-1
FE N)= Y e, fec R
n=0

for N € N. The problems concerned with S,(N), F(&, N) are called digital sum problems and investigated by
many authors. For historical survey, see [10], [7]. Trollope [11] obtained an explicit formula of S}(N) forp = 2
and Delange [2] gave its elegant proof by use of the Takagi function. Coquet [1] studied an explicit formula of
Sy(N)for k = 2, p = 2 and obtained an explicit one. For an explicit formula of F(&, N), Stein [9] gave a one. In
[4], we have obtained explicit formulas of Sy(NV) and an explicit formula of F(&, N) by use of a probabilistic
method.

In [5], we have introduced a generalization of Sy(/NV) and F(&, N), which contain information per digit and
obtained explicit formulas of them. We will apply these results to counting the number of occurrences of
subblocks of digits.

Let w= (@s_1, g2, > @), aic {0,1,---,p—1},i=0,1,--+,d — 1, be a subblock of digits (a word)
with lengthd > 1. Set ¢ = p®and W = a4 1p% ' + as-2p° % + -+ + a,, that is, W is a numeric number of w.
For a given word w and N € N, we set

N—1
(1 B(N, w) = ¥ b(n, w),
n=0
where
(2 b(n, w) = Y L imansm, -, ar-atny=w)-
izd

The following theorem was obtained by Prodinger [8] for p = 2 and by Kirschenhofer [3] for a general p.
Theorem 1.1 Let w = (ay-1, @y—2," " *, @) be a word with length d and a,-, # 0. Then we have

N _q(d -1 + H,(log, N) + Eﬁ(——k])s" N) .

Here H,, is a continuous periodic function of period 1 with H,(0) = 0 and E,, is a bounded function such that

1 _ log,
NB(N, w)

—d( pd _ —dyx
(= -y P w— 1) RN e
-9 =1 <E,=(1-p )p—l'

In this paper, we give a simple representation of H, and E,. If w = (@41, @s—2," ' *, @) with a,_, = 0, the
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above definition of b(n, w) also counts the subblocks such that (q;-(n), ai—2o(n),* * *, a;-a(n)) = w with i >
[log, n] + 1. So we introduce the following definitions:

3 b(n, w) = Y Liaro tmyanmatm, - aicatn = wh
[log, n]+1=i=d
and
— N71 —
4 B(N, w) = Y b(n, w),
n=0

which does not count such blocks. We also give an explicit formula of B(N, w).

2 Preliminaries

Forn=ZX.oain)p'and=1,2,---,p — 1, set

s(n, Dy = E Liwim-n

i=0
and
s(n)p = (s(n, Dipys s(1, )y *5 5(1, 0 — D).
We define
N-1 N-1p-1
(5) Si(NYpy = Y s(n)y = X TIs(n, Dby k= (ky, -+, kp1) € NP7,
n=0 n=0 I=1
and
N-1 N-1 .
(6) FE N)p = Y e ) =y pZiidstnho & = (& --+ &, 1) e R
n=0 n=0

For later convenience, we set & = 0.

LetI = Lo =1[0,1and I,; = [j/p", (G + V/p™),j=0,1,--,p" — 2, L, -y = (p" — D/p", 1] forn = 1,
2,3,--- Letr =(ro, i, -+, rp-2) be a vector suchthat 0 < r, < 1 for/=0,1,---,p — 2 and 2 ¢r < 1and
set 7,-1 = 1 — £7.¢ r. The probability measure u, on I defined by

w (L Lpj+i) = rl,ur(ln,j)

forn=0,1,2,---,j=0,1,---,p" = 1,1=0,1,- -+, p — 1, is said to be a multinomial measure. We denote
the distribution function of u, by L{r, - ):

L(r,x) = ([0, x]), xe L
For N e N, set t = log, N, and denote its integer part by [#] and its decimal part by {f}. We now set

I L+ ef + - 4%\
(7) a(m, X, 60) - aéqm . .aé;"g*ll 1+ eé"" + e+ eéovpil 5:50,
where m = (my,---,my_) e Z5', Iml =m, + -~ + my.1, xe R and & = (&1, -, &p—1) and denote

(8'/3x"ya(m, x, &) by a¥(m, x, &).
Theorem 2.1 ([5]) We have

alk\

WF(59 N)(p)

= (1 + eﬁo,l 4+ .+ eéo,p—l)’
[

k| ¢ {
X /=EO Hk'l(t’ éo)(l + ec()‘l + -+ egﬂ.pfl °
Here Hy (x, &) is a continuous periodic function of period 1 with respect to x defined by

Hii(x, &) = (1 + e + - + efor)
(KI=DAk (k=G )= Dy

X
Ji=0 Jp-1=0

k k,_
X ( .1 )( .p 1)(1 + e 4+ o 4 eéo,pfl)lf{x}
J1 Jp—l
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1 0 .y 0! 1 ‘
N T A U T | A

withr, = e%/(1 + e +e“+ -+ + e, [=0,1, -+, p— 1. In particular, we have

1k /
Sk(N)(p) - NE Hk,l(t, 0)(;) .
=0

()
Corollary 2.1 For the unit vector ¢; = (0,--+,0, 1,0,---, 0), we have
[¢(] +1 11y 0 1 ‘
8 Se(N)p = N{=—— + — Lir, == .
(3) (N )i ( D p 9, P
3 Results

Theorem 3.1 Let w = (ag..1, Qu-2," "+, Go) be a word with length d and a; # 0 for some i. Then we have

_logg N-(d—-1) E,(log, N)
q N o

%B(N, w) + H,(log, N) +

Here H, is a continuous periodic function of period 1 with respect to t defined by

_o o fe—il d-1y Ll e O 1 d
H.(t) = Q(,Eo{ d } 2 ) + i;)q 6§WL<r’q'((’i)/d})‘ 0+ q

foré = (él’ CZ;”’; éq—[)e qulsr = (rO’ rl’...yrq—‘Z) Withr[: eé//(l + eél + eil R e{q I)yl: 0, 19..'7
qg — 1 and

=0

1 d—1 ) N )
Eft) =~ 3 ((N - p'[iD - P'ltpd«/v/pl)-[N/p'1>>v‘v>)-
q p
Theorem 3.2 We have

B(N, w) = H,(log, N) + ’W.

1
N

Here H, is a continuous periodic function of period 1 with respect to t defined by

_ a-1 q*((lfi)/d} i gt s
H”(t) = Hw(t) - E (q_l + q =/ {q u=n }}1{[q1“”‘/‘“]:ﬁ') + q t ’)/d}lg[q i n/r/]>m>
=0
and
_ -1 ‘ |
E (1) = E1) + ;)pf{q“””"}luq‘wfw:m + -1

Remark 3.1 Delange [2] calculated the Fourier series of the periodic part of S; using the expansion of the
Takagi function T(x), that is,

©) T() = ¥ 5 w@" ')

for x € [0, 1] where w(x) = 12x — 2[x + 1/2]|. Noticing that H, has an expansion similar to (9), Prodinger [8]
(for p = 2) and Kirschenhofer [3] (for a general p) gave a representation of the Fourier series of H, by use of the
z-function of Hurwitz. We have already shown that (§/9&)L(r, x)|:—¢ has an expansion similar to (9) in [6,
Section 5]. So we can also calculate the Fourier series of H,, via our representation by means of a technique of
Delange.

4 Proof of Theorems

In the following we use the notations ¢, = log, N = t/d, (i) =log,(1 + [N/p‘]) and (i) =
(log, [IN/pDlin=py for Ne Nandi =0,1,---,d — 1. We use the convention © - 0 = 0.
Lemma 4.1 1) We have

@ 140 = {’;’},
N N

N )qlmmlwzpl} = I:}q[t(i)][t(i)lﬂ{/([)},

(i) <1+ D D
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(i) [g]q1—<m = (qu{(ti)/d)>1(sz’)~

2) One of the following statements holds:
@ [€i)] = [KD)] for any i.

T - T X X T
@) [«)] = [¢(D)] + 1 for some i. In this case, we have { (i)} = 0,1 + [N/p] = q"* =/ gnd [1(j)] =
[¢(J)] for any j # i. .
Proof. 1) (i) It suffices to show the equality for N = p'. Since N = £, a-P 7 o€ {0, 1,41,
p— 1} with k = 0,1,---, [¢t] and oy % 0, we have

N [¢]1-i o

]
k=0

Then

; —i Xl -k
W7 e [¢] — i+ log, ZKS pF
=lo -1 — =
gq (p E p* ) d

k=0

N
log, 1—7—,

As 0 < log, {25 (ou-1)/P* < 1, we obtain

[¢] - i+ 1og,,:}fi5f%

SN ey =i _[e—i
- [ [0 ]-5
1) (ii), (iii) are obviously from definitions of /t(l 5, (i) and 1) (i).

2) Aslog, (1 + [N/p']) = log, (P17 (K25 (an-0) /P* + 1/(p1177))), we have

. - - 1
[z] — i + log, <E;ct]o ‘a[[;]k £ 4 pmi)l
P .

If [?(S] = [#(i)] + 1 for some i, we know that log, (Zk25' (an-«)/p* + 1/(p"17") = 1, and [¢] — i + 1 divides
by d. Then we have o = p — 1 for k = [¢1, [¢t] — 1,--+,iand {#(i)} = 0. Moreover, as

[(1—i+1) _ |[ef] — i =i+l
4[] -

o~

[1(i)] =

d d ’

we obtain

1+

i

— p[l]7i+1 — q1+[([t]~i)/d] _ q1+[(t—i)/d].

Since [¢] — j + 1 does not divide by d for j # i, we derive the last assertion of (ii).
Proof of Theorem 3.1. Since

d—1 n
b(n, w) = ;0 S([pi], W)(q),

we have
d-1N-1 n
10) B(N, w) = S([“,}, W)(q)-
{=0 n=0 p
We now calculate the right-hand side of (10). By Corollary 2.1, we can easily derive
t] +1 _ i) 1
11 S..(N =N[—Lﬁ+ O A ‘ .
11 (N ( P q 3z, PR A

By use of (11) and Lemma 4.1, we obtain for N = p’

N-1 n )
)D S([i]’ W)(q) = p'S., (1 +
n=0 p

= piSew (1 +

i

N ; ,
—|(p = N+p
p )(q) (

e
(@)

.

et

pi

o >(5]).)
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N . )
— + pl _— N + pl

(9)

= (N—p"[ﬂ,-])sw(l + N ]_VDS(M)
D p P |/
_ [N NN\ LT+ 1 iy 8 1
(N p[p,})(l s )( q T a afWL(r’q'—('/(m) z:=0)
g )[ﬂ](ﬂ% + qn—(m&LG,ql}(m)
) 11) N| 1) + 1
p'|/|p q

()] + 1

q

1‘{65)497 # ’
)q aéw (l’, q1~(i(;)}> =0

N\ @y 0 1
)[p]q aéWL r’q1-<m> &=0

b

RS

+<pi~N+pi

N

+ |pP~N+p
P <P p

P
_ [N N\ [4D] = [@D] , N[t —i {t—i}
= (N-p|= 1+ |55 e 2 - +1
s )+ [P T ST - 1
INI\[N N @1 0 1
+ [N = pil— o LOI UG R R UG Ly , _ ‘
( p |:p’]) _p‘:| 9 afw (r ql—(t/(i‘3)> =0

N

i

1+

_ -y 9 L
q ac. L T g

§=0

ey !
+ Ng'~ ”'”@L(” W)‘

Nl tu—iay 0 R S 1
Na 3%s (L (" ql"""”‘”) t (r’ q”m» ’§=0

N)\[N H[g]
i -ty 9 :
N R M | T

p|lp =0
For N < p', since [N/p‘] = [t(l\)] = [#(D)] = 0 and L(r, 1/g'~'¢=9/@y| .y = —1/q? same equality holds.
By the definition of L (for details, see [6, Section 2]), we have
=i d 1 1
w=-iyjay _9_ B S .
b))
1+ g
i d 1
— {t—iydy _Y_ ‘e . _ 4 —
= Ng' = 3. (ro+n + +nw) L g L(r, ql—(ﬁ)) o
)
— pi 2 + + e+ i
p aéw(ro n Ti(iy) i

- -]
— pil Y N| -y 0 — 1
+(N p[ﬁ'})[z)i]q 9 \"\" g L(“q“‘“’)

where k; = pU(N/p") — [N/p']) — 1. Therefore we have

_ N fe= _ N N\ [4)] — [€D)]
s =5 | G5 - {5 ) o) )

AN N S 1
+ (N =P S5 S QIR R RO o %) ‘
( g [p :|> |:p'] 7 4 ql—(t(/i\)) £=0
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N

1+

- 1—(@)_3__ v 4
q agwl‘ r’q|+[(t—i)/d1

&=0

i) B 1
+Nq1 {(¢ )/d)%L(r, ql_((,_i)/d})‘gzo

; 0
- p E(r0+r1+ e +rk(,‘))

=0
We now break the proof up into two cases.
Case (i) Let [#(i)] = [#({)] for any i. Then, since
p+ [N 1+ |Y
1 p'| p
PINLO) Y PRI
we have
N-p NN 1+ | ()] = [4G) | N - p| MV | guion-torsi—ion 3 g (1 ’
p p q p'|/\p il gt ) le=o
L[
] p

— gt 9
q ac. L T g ete=ival

&=0

for anyi.
Case (i) [#(i)] = [#({)] + 1 for some i. Then, by lemma 4.1, we have

(N—p"[g])(l + )Mﬂ + (N_pz[ND[N] q[z(})][mm—{m)aL(r’ 1 )

N
‘ q pl/\p I ql‘m?))
1+ [LV}
1-{1()} iL 4

pl

£=0

— 9 9 \" g' A )
[N NI\N1  [N] |, @ 1
= (N=-pl= 11+ |5 =+ | Sile " - gL |r, =) — L(r, 1 ’
( i P )(( p' )q _p,-q 9G» (q (r q) 4 )) £=0
[N] NI\N1 |, [N] | i @
= [N — pil= 1+ =)=+ |=]|gt- O 2 _1'
( p ‘pl )(( -pz )q -pl—q aéw(qr() ) é—o)
[N NN 1 [N]
= (N — lii 1+ = LR E A Pl =0
O (S A Pl T

for i.
In any case, we have

_CANIN - t—i 1-{-ipiar 9 1
B(N,w)—):( ( P { 5 }+1)+Nq aé_L<r,m>t_o

=0 q w
9 )
=0
t—(d—1) 1"“{t—i} d—1\ o @ 1 ‘ d
=N——— — + (t ‘)/d}_L r’_“.:_‘. +7
( q q(,-:o d 2 &1 0 "\ g g

TP e,
-1 g

- Ep'g(ro‘*“"l + .- +rk(i))‘
=0 w

(ro +r+ -+ rk(,-))
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As

R
aly

(r0+r, + - +rk(,~))

_i1+€€‘+"'+€5“”
o aéw 1+ ed + - + e

- _1/N N
qg\p' |p

c(n, w) = i>[loEg,,n]+1 Lita, tmha st s =whs

&=0

1 pUUN/p)—[N/p1)> Wi ) s

we obtain our formula.
Proof of Theorem 3.2. Let

and set

N—-1

C(N, w) = E c(n, w).

Then, by an easy calculation, we have

N COR N - _
C( Pl W) =L et Pl g | =] Lieen=w T @ M g g5
k=0

Q

Therefore, we have

e Eoe3]

d—1 ) [H(H] -1

=Y | L a+
k=0

=0

N

i

N = p _
— | — q[[(')] 1([‘1‘4« Didi) = p) + q[l(l)]l([qm Did 1] 5 )

P "

As [[N/p1/q"™ = [(N/p')/q"V "] = [¢'“~"/*, we have

= Nq"((l*i)/d‘r{q((lfi)/d}} _ p'{q(f”')/d}_

Moreover, as

» N ] , 1
ki — - —{(e-iy/dy _
RSP p— 1
we obtain our formula.
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